2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Practical Latency-aware Scheduling for Low-latency
Elephant VR Flows in Wi-Fi Networks

Shao-Jung Lu, Wei-Xun Chen, Yu-Shao Su,
Yu-Shou Chang, Yao-Wen Liu, Chi-Yu Li
Computer Science, National Yang Ming Chiao Tung University

Hsinchu City, Taiwan, ROC

nctu@louie.lu, {chrissy81527, shao.cs09g, 1jk25679}@nctu.edu.tw,

{yaowenliu.cs07, chiyuli}@nycu.edu.tw

Abstract—Virtual reality (VR) applications are in-
creasingly popular. With high-quality video streams
and interactive content, they require both low-latency
and high-bandwidth performance demands on the com-
munication from the edge-based VR server to the VR
headsets. Although most VR headsets are equipped
with dedicated wired or wireless modules connected
to the VR server, using common Wi-Fi networks to
support them can be a promising trend due to con-
venience and low cost. However, current Wi-Fi Ac-
cess Points (APs) cannot meet latency demands of
low-latency elephant VR flows, especially in traffic
congestion cases. We thus design a practical Wi-Fi
scheduling solution, designated as LAST-PQ (Latency-
Aware Scheduler with Two-level Priority Queueing),
to support VR flows at the Wi-Fi AP. It monitors
the runtime latency performance of VR flows while
prioritizing scheduling for urgent flows, whose latency
demands are at risk of violation. We implement LAST-
PQ in Linux on a commodity Wi-Fi platform using an
open-source Wi-Fi driver; it is compliant to the current
Wi-Fi scheduling framework. The evaluation result
shows that it can reduce latency by up to 79.89% in
various congested scenarios; moreover, it consistently
meets the latency demands of VR flows in cases of
mobility at runtime.

Index Terms—W.i-Fi, low latency, VR, scheduling

I. INTRODUCTION

Virtual reality (VR) applications are increasingly popu-
lar in recent years [1], with more stringent demands than
conventional applications on the communication perfor-
mance between the VR server and headset. Specifically,
their high-quality video streams with real-time interactive
content require joint low-latency and high-bandwidth per-
formance. To ensure the performance, wired VR devices
(e.g., Oculus Rift) and those with dedicated wireless mod-
ules (e.g., HT'C Vive) are the mainstream VR platforms.

Although the Wi-Fi network has been a common net-
work service deployed everywhere, there are still few wire-
less VR devices relying on the common Wi-Fi network.
The main reason is that VR performance can be easily
affected by Wi-Fi traffic congestion. However, enabling
common Wi-Fi networks to support VR applications ben-
efits both VR vendors and users, saving the cost of

979-8-3503-2603-1/24/$31.00 ©2024 IEEE 57

Guan-Hua Tu
Computer Science and Engineering
Michigan State University
East Lansing, MI, USA

ghtu@msu.edu
1 - =
T - 36
08y / 30F -
i B / Efg VR Only - - -
Qo4 . VolP Only &) Congested VR — - -
i 7 VR Only - - - 12
0.2 i/ Congested VoIP ------ 6b o
0 o/ Congested VR — - - 0
0 20 40 60 80 100 0 10 20 30 40 50 60

Latency (ms) Time (s)

(a) Wi-Fi per-packet latency. (b) VR frames per second.

Fig. 1: Comparing an elephant VR flow with a mouse VoIP flow in
non-congested and congested cases.

dedicated VR wired/wireless modules and providing more
convenience when using VR applications with ubiquitous
Wi-Fi networks.

We thus examine the VR performance on the Wi-Fi
network. We conduct a case study by streaming a VR
traffic flow from a VR server to a smartphone’s VR
application through Wi-Fi. The Wi-Fi Access Point (AP)
connects to the VR server via a wired network and the
smartphone, which serves as an emulated headset, through
Wi-Fi. As the VR server is deployed at the Wi-Fi edge, the
per-packet latency at the Wi-Fi AP dominates the overall
latency performance. Therefore, we examine the latency
values for the VR stream. We compare a VR flow with
a conventional VoIP flow in non-congested and congested
cases. Both flows are streamed to the same smartphone.
The non-congested case does not have any other traffic,
whereas in the congested case, there are two additional
downlink TCP flows at the smartphone, along with two
clients, each with one downlink TCP flow, in the same
Wi-Fi network. More detailed settings are provided in
Section III.

We observe that the Wi-Fi AP cannot satisfy the ele-
phant VR flow’s latency demand' in the congested case.
In the non-congested case, as shown in Figure 1, the VR
and VoIP flows exhibit Wi-Fi latency as small as 8.11 ms
and 0.19 ms, respectively, at the 95th percentile. However,

1n this paper, VR and VoIP flows are designated as elephant and
mouse flows, respectively. The former usually has a requirement of
several tens of Mbps, while the latter requires only below 1 Mbps.



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

in the congested case, their latency values increase to
60.37 ms and 25.97 ms, respectively. Such large latency
increase prevents the VR flow from achieving the required
number of frames per second (FPS), i.e., 30; its average
FPS is only 4.94 during the traffic congestion. Thus, the
Wi-Fi AP can indeed offer low latency to the mouse VoIP
flow, but not to the elephant VR flow, which has 45 Mbps
demand with 1920x1080 resolution in the experiment. The
root cause is that the current Wi-Fi scheduling framework
neither prioritizes low-latency elephant flows nor satisfies
low-latency demands at runtime. In Section III, we con-
duct a comprehensive case study to examine why current
Wi-Fi networks cannot adequately support VR flows.

In this work, we design a practical Wi-Fi scheduling
solution, designated as LAST-PQ (Latency-Aware Sched-
uler with Two-level Priority Queueing), to support low-
latency elephant VR flows at the Wi-Fi AP. It is compliant
with the current Wi-Fi scheduling framework and ready
for use. Additionally, it is latency-aware, allowing it to
satisfy VR latency demands configured from the user space
at runtime. The core concept of LAST-PQ is monitoring
per-packet latency statistics and performing prioritized
scheduling whenever there is a potential demand violation.
It consists of three main components: two-level priority
queueing, cross-layer delay controller, and latency-aware
scheduler. With the priority queueing, LAST-PQ can pri-
oritize each VR flow from the current Wi-Fi scheduling
framework at both flow and device levels. The delay
controller in the user space monitors latency statistics,
dynamically adapting each VR flow’s permitted queueing
delay using a window-based delay gradient algorithm.
Collaborating with the delay controller, the latency-aware
scheduler in the kernel space identifies urgent VR flows
for prioritized scheduling.

We implemented and evaluated LAST-PQ on a Linux-
based PC with a Qualcomm Atheros card using the open-
source ath9k driver. The evaluation considers both static
and mobility cases, and the enhanced distributed channel
access (EDCA) mechanism enhanced by LAST-PQ, under
traffic congestion. Results demonstrate that LAST-PQ
can satisfy a VR flow’s demand in most cases, reducing
latency by up to 79.89% in the most congested scenario.
It consistently meets latency demands in mobility cases at
runtime. Furthermore, LAST-P(Q enhances the EDCA to
be latency-aware while effectively supporting multiple VR
flows with different latency demands.

The rest of this paper is organized as follows. Section II
presents the current Wi-Fi scheduling architecture on
Linux, and Section IIT conducts a case study on the VR
performance in Wi-Fi networks. We then design, imple-
ment, and evaluate LAST-PQ in Sections IV, V, and
VI, respectively. Section VII presents related work and
Section VIII discusses issues about LAST-PQ. Finally,
Section IX concludes the paper.

58

{ I
i AC Classifier i

A
B A |
gnment
i I I 1
; ‘ Flows Classifier ‘ ‘ Flows Classifier ‘
; [ [
v v v A\ v v
| — e
= i wievel )
-~ FQ-CoDel ) Facopel ) OWilevel MAC
R Scheduling Layer
Old New * *
Flows Flows
HH HHHH Retry Retry
Queue Queue * .

Flow Dequeve | | L
Scheduler ;’Device—level
| .
! Scheduling

~
old New
TIDs TIDs

Fig. 2: Wi-Fi packet scheduling architecture on Linux.

v

Hardware

Subframe errors |

II. WI-F1 PACKET SCHEDULING ARCHITECTURE

In this section, we present the Wi-Fi packet scheduling
architecture employed on Linux-based APs. As shown
in Figure 2, it comprises three major components from
top to bottom: access category (AC) classifier, flow-level
scheduling, and device-level scheduling. These components
are currently enabled by updated methods in the Linux
kernel: EDCA [2], fair queueing controlled delay (FQ-
CoDel) [3], and airtime fairness scheduling (AFS) [4],
respectively.

AC Classifier. EDCA defines four ACs in increasing
order of traffic priority: background (BK), best effort
(BE), video (VI), and voice (VO). Higher priority is
achieved by adjusting two parameters: contention window
(CW) boundary and arbitration inter-frame space (AIFS).
Smaller values for these parameters allow faster data
packet delivery. The CW boundary gives a range of time
slots from which a station randomly selects a number to
wait for the next transmission when the exponential back-
off algorithm is executed. The AIFS is the time period that
a station has to wait before it is allowed to transmit data.
The smaller the CW boundary or the shorter the AIFS is
used, the faster data packets can be delivered. To configure
a high-priority AC for data packets, an application can
specify the corresponding tag of the differentiated services
codepoint (DSCP) in their IP headers.

At the MAC layer, each AC is associated with a set
of traffic identifier (TID) queues, with each TID queue
dedicated to one connected station. Figure 2 shows the
scheduling architecture for the BK, to which those of
the other ACs are similar. The TID queues of each AC
are handled by the same hardware queue with the AC’s
parameters. Each TID queue has multiple flow queues
where flows are classified based on flow information (e.g.,



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

IP address and port number). When a packet reaches the
MAC layer, it is classified to an AC based on its DSCP tag,
passed to a TID queue based on its destination station,
and finally enqueued to a flow queue, ready to be scheduled
by the FQ-CoDel.

Flow-level Scheduling. FQ-CoDel [3] schedules pack-
ets among the queues of each TID for transmission; each
packet queue corresponds to a specific flow. FQ-CoDel is
built on top of CoDel [5], a simple active queue manage-
ment (AQM) algorithm designed to control bufferbloat-
generated excess delay. It provides two major functions:
ensuring flow fairness and preventing starvation of sparse
flows (e.g., VoIP). Flow fairness is achieved through a byte-
based deficit round-robin (DRR)) scheduler. For starvation
prevention, FQ-CoDel utilizes a two-tier queue structure
with old and new flow queues to prioritize sparse flows. It
schedules flows from the new queue with higher priority;
flows in the old queue are scheduled only when the new
queue is empty.

Sparse flows typically appear in the new queue to obtain
high priority. This is because the flow is inserted into
the new queue when the flow’s queue state transitions
from empty to non-empty, a situation that commonly
occurs with sparse flows. The flow inserted into the new
queue is assigned a default byte-based deficit value for
DRR scheduling. This deficit value decreases as delivered
bytes increase. In the new queue, when a non-empty flow
becomes empty or has a negative deficit, it is transferred
to the old queue.

Device-level Scheduling. AFS schedules downlink
transmission for connected stations at the AP, considering
airtime fairness [4] among TIDs. Each TID is associated
with one station in each AC. It addresses a wireless
anomaly [6] where slow stations may consume more air-
time than fast stations, thus reducing overall bandwidth.
AFS adopts two queues, old and new queues, to schedule
TIDs, with operations similar to FQ-CoDel. The only
difference is that the deficit is counted based on airtime
instead of bytes. When a TID is scheduled for transmis-
sion, AF'S requests the flow dequeue scheduler of the TID
to dequeue packets based on the FQ-CoDel operation.

III. CASE STUDY ON ELEPHANT VR FLOWS

In this section, we assess the performance of ele-
phant VR flows in Wi-Fi networks, considering both non-
congested and congested cases, along with the impact of
the EDCA.

Experimental Setting. We set up a Wi-Fi AP and
connect two types of clients to it. The AP is based on
IEEE 802.11n, utilizing hostapd 2.7 on an x86 PC running
Linux kernel 4.2. It is equipped with a Qualcomm Atheros
AR9280 wireless card. It operates on the 5GHz frequency,
specifically on channel 132, employing a 3x3 MIMO an-
tenna, and has a 40 MHz bandwidth. It uses the Linux
default rate adaptation mechanism, Minstrel. We chose the

59

traditional 802.11n AP platform because newer Wi-Fi AP
platforms (e.g., 802.11ac/ax) have implemented a portion
of the packet scheduling architecture in the Wi-Fi NIC
firmware, which is not open-source. As a result, they do
not allow the collection of latency results or modifications
to the scheduling architecture.

The connected clients include 2 smartphones and 5
embedded Wi-Fi devices. The smartphones, which include
the ASUS Zenphone 6 and Google Pixel 3, serve as VR
clients. The embedded Wi-Fi devices are used to receive
background (non-VR) downlink traffic. They are built
based on the commercial 802.11ac AP, TP-Link C2600,
by enabling the client mode with OpenWrt 18.06 [7].

We built two VR servers using PCs running Windows
10 and connected them to the AP via Ethernet. Each
VR server is set up with two software programs, Steam
VR [8] and Trinus VR [9]. Steam VR can provide VR
content on various hardware platforms, while Trinus VR
can turn smartphones into VR headsets. The Trinus VR
application is installed on the smartphones to receive VR
flows from the Trinus VR server. In a common setting
with 30 FPS and a resolution of 1920x1080, a VR flow
requires 45 Mbps of network bandwidth. These flows are
delivered in the BK category unless explicitly specified.
For background non-VR traffic, TCP flows are generated
to Wi-Fi clients from a PC connected to the AP via
Ethernet. Each experiment consists of 5 runs, each lasting
20 seconds. We focus on latency performance at the 95th
percentile by collecting per-packet latency statistics (see
implementation in Section V). Notably, per-packet latency
is the period from the time a packet starts to be queued at
the MAC layer to the time the packet’s acknowledgement
(ACK) is received.

All the clients are located close to the AP with good
channel conditions. The physical data rates are fixed
at 162 Mbps for smartphones with two antennas and
405 Mbps for embedded devices with three antennas,
respectively. This static setting allows us to focus on Wi-Fi
scheduling issues for elephant VR flows while minimizing
the impact of rate adaptation and wireless channel dynam-
ics. Once any scheduling issues are identified in this static
scenario, they can only be aggravated by those dynamics.

Note that, although the Trinus VR application displays
FPS information on its GUI panel, this data cannot be
recorded as FPS statistics during experiments. We use a
Python library called memorpy to trace the memory loca-
tion where the Trinus VR application stores FPS values.
Finally, we capture that memory address and record FPS
values over time.

A. Non-congested Case: VR Flow Only

We initially examine per-packet latency performance
for a single VR flow in a non-congested scenario,
without any other traffic. To account for different
bandwidth demands, we vary its resolution from low
(1152x648) to high (1366x770) and ultrahigh (1920x1080).



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

1 —
. 0.8} ! ’
0o | High ---- || .
I} S | B LU Wil |
0 2 4 6 81002 4 6 8100 2 4 6 810
Overall Queuing TX (ms)

Fig. 3: Non-congested case: per-packet latency of a single VR flow
with three different resolutions.

Based on our measurements, these resolutions require
19.97/25.57/45.38 Mbps bandwidths, respectively. In ad-
dition to overall per-packet latency, we decompose it into
queueing and transmission latency, as shown in Figure 3.
It is observed that latency increases with the resolutions
of VR flows.

Specifically, at the 95th percentile of overall latency,
the low, high, and ultrahigh resolution settings result in
4.29 ms, 6.07 ms, and 7.98 ms, respectively. Furthermore,
latency values for over 99% packets in all settings are below
10 ms, meeting the requirements for most VR flows [10],
[11]. While it can be anticipated that queueing delays may
increase with other coexistent traffic flows, prioritizing the
VR flow over others can ensure that the required latency
is still satisfied.

B. Congested Cases: Multi-flow and Multi-client

We consider two congested cases: multi-flow and multi-
client, to examine the flow-level (i.e., FQ-CoDel) and
device-level (i.e., AFS) scheduling mechanisms, respec-
tively. In the multi-flow case, there is only one client, where
a VR flow coexists with multiple data flows. In the multi-
client case, there are not only one VR client with a VR
flow and multiple data flows, but also multiple non-VR
clients, each of which contains a data flow.

Multi-flow Case.  We compare the latency perfor-
mance of the elephant VR flow with that of a mouse VoIP
flow when multiple data flows coexist with them. We vary
the congestion level by considering 0, 1, and 3 background
data flows. The overall and queueing latency results of
the VR and VoIP flows are shown in Figures 4a and 4b,
respectively. Almost all VoIP packets have latency below
10 ms. In contrast, for VR flows coexisting with 1 and
3 background flows, packet latency significantly increases.
For example, the 95th latency increases from 7.85 ms in
the case of no background flow to 19.87 ms and 39.97 ms,
respectively.

It is further observed that VR flows in the cases of 0 and
1 background flow can consistently deliver 31 FPS while
achieving an average throughput of 45 Mbps, as shown in
Figures 4c and 4d. However, for the VR flow in the case of
3 background flows, FPS and average throughput decrease
to 21.78 and 30.95 Mbps, respectively.

The significant increase in latency is primarily at-
tributed to queueing latency. This is because FQ-CoDel

fairly schedules VR and multiple background flows, and
an increase in background flows causes VR packets to be
queued for a longer duration. It is observed that FQ-CoDel
can indeed ensure small latency for mouse VoIP flows,
which are mostly in the new queue with higher priority
than the old queue. However, most VR packets experience
the old queue since, for most of the time when new packets
arrive, the packet queue of each elephant VR flow is not
empty, thus consistently remaining in the old queue.

Multi-client Case. We vary the congestion level in the
multi-client case by considering three scenarios: 3 non-
VR clients with 0 data flows at the VR client (tagged
as 3C), 3 non-VR clients with 3 data flows at the VR
client (tagged as 3F3C), and 4 non-VR clients without
data flows at the VR client (tagged as 4C). As shown
in Figure 5a, all three cases significantly increase the
latency of the VR flow, and none of them can sustain
its normal operation. For instance, they increase the 95th
latency from 7.85 ms in the VR-only case to 36.96 ms,
48.54 ms, and 59.38 ms, respectively, exceeding the VR
flow’s required low-latency demand of 20 ms. The root
cause is that AFS fairly schedules airtime among multiple
clients, as shown in Figure 5b, where the values for all
cases are almost 1 in terms of Jain’s fairness index. When
the VR client coexists with other clients, the fairly shared
airtime may not be sufficient for the VR flow, thereby
increasing latency.

The current joint flow-level and device-level scheduling
framework can effectively support low-latency mouse flows
while achieving fairness for coexistent flows and devices,
but it has poor support for low-latency elephant VR flows.

C. Does EDCA Work?

EDCA can indeed enhance the latency performance of
the elephant VR flow tagged with the VI category, but
it only prioritizes its channel access. It may still face
challenges when multiple latency-sensitive flows coexist.
Therefore, we investigate multi-flow and multi-client sce-
narios where all flows are latency-sensitive and tagged with
the VI category.

Multi-flow Case. We generate two VR flows and three
TCP flows using the Trinus and iPerf software programs,
respectively, to a single smartphone. In practice, differ-
ent kinds of application flows may have varying latency
requirements. In addition to the latency requirement of
20 ms for the VR flows, we assume that the TCP flows
with 50 Mbps have a less stringent requirement of 30 ms.

Figure 6a shows the latency performance of these five
flows scheduled in the VI category. It is observed that the
95th percentile latency values of the TCP flows are all
below 20 ms, satisfying their requirement. However, for
the VR flows, these values are 26.89 ms and 27.80 ms,
respectively, failing to meet the 20 ms requirement. The
better latency performance of the TCP flows can be
attributed to the different traffic patterns generated by
the Trinus and iPerf.

60



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

’lf B /// i / 7
08 « / Y o8l ,
! 2 // ] s
=06 ; /  VoIP+OF L 0.6f: ., VoIP+OF
a o " VoIP+IF - - - a | /7 VoIP+IF - - -
QO04t 0/ 7 VoIP+3F Co4y Fys VoIP+3F
T VR+0F —- | VR+0F — -~
0.2 '( i1, VR+IF - — 0.2} . VR+IF -—-
ol VR+3F —— 0 W VR+3F ——
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Latency (ms) Latency (ms)

(a) Overall latency. (b) Queueing latency.

Es0

30 [ S VA ABIN LA AAALAN

24 240
vl T - Bagf——s
A 18 2
2 5

12 220

6 VR+0F VR+3F - — o 10 VR+0F VR+3F -—-

VR+IF - = o LYRHIF —
0 4 8 12 16 20 0 4 8 12 16 20
Time (s) Time (s)
(c) FPS. (d) Throughput.

Fig. 4: Performance of VR and VoIP flows in multi-flow cases (+zF stands for « background flows).

I s £ <
L g

08 70 <03 §
wosf| // g §
a S = 0.6 \
Ooall 77,/ VROnly 3 \
Ay 3C —-- £ 04 \
0.2/f // 4C —- %02 §

YV 3F3C —-- 1 £, \ ‘

0 20 40 60 80 100 £ “VROnly 3C  4C 3F3C

Latency (ms)
(a) Overall latency. (b) Jain’s fairness index.

Fig. 5: Performance of elephant VR flows in multi-client cases (zC
stands for  non-VR clients).

0.8 VR 0.8 L[’/l - -
50‘6 i VR-2 - -- a 0.6 ;} 7 VR 021%, -
Co4ry TCP - — Soaf) / 3¢ -~
0.2+ TCP — - 0217 3F3C —
TCP - / 3F4C
0

10 20 30 40 50 60
Latency (ms)

20 40 60 80 100 120
Latency (ms)

(a) Multiple latency-sensitive flows(b) A VR flow in cases of multi-
coexisting at a client. client and multi-flow.

Fig. 6: Enabling EDCA for all latency-sensitive flows in the VI
category.

It is evident that EDCA assigns the same priority
setting to all flows within the same category, without
considering their varying latency demands. The demands
of latency-sensitive flows could likely all be satisfied with
a latency-aware scheduler. In this case, VR flows could
be prioritized over TCP flows, which do not require low
latency performance. The latency-aware scheduler can
manage the precedence among latency-sensitive flows over
time based on their latency requirements, thus accommo-
dating all demands.

Multi-client Case. We then examine the multi-client
case with four different scenarios: 3 and 4 non-VR clients
without any data flows on the VR client, and 3 and 4
non-VR clients with 3 data flows on the VR client. As
shown in Figure 6b, the latency performance of the VR
deteriorates with an increasing number of non-VR clients
and data flows. Although all flows are in the VI category,
EDCA treats them equally with only higher priority on the
channel access. Consequently, the VR flow may still suffer
from traffic congestion without being prioritized based on
its latency requirement.

61

IV. LAST-PQ DEsIGN

We design a closed-loop scheduling solution, LAST-PQ),
to meet the latency demands of elephant VR flows in Wi-
Fi networks. It schedules the transmission of each elephant
VR flow based on its runtime latency statistics, consider-
ing its latency demand, denoted as ld; g, which indicates
the packet latency for flow ¢ at a certain percentile 5.
The latency demand can be configured by the VR user or
application through a given interface. Notably, most VR
application servers are deployed at the network edge (e.g.,
next to the Wi-Fi AP) to provide stable low-latency, high-
throughput performance. Therefore, Wi-Fi latency can be
considered as the major performance bottleneck.

LAST-PQ adaptively ensures that the Sth packet la-
tency remains below the specified latency demand. The
latency may be influenced by time-varying channels, user
mobility, and dynamic traffic. Instead of consistently
prioritizing latency-sensitive flows, LAST-PQ prioritizes
them only when their demands are on the verge of being
violated. This approach minimizes the impact of other
traffic flows, allowing latency-sensitive flows to meet their
demands without receiving excessive precedence. Since
LAST-PQ satisfies latency-sensitive flows by suppressing
other latency-insensitive flows at the same AP, they can
be satisfied in congested cases only when their latency
demands can be essentially met in the absence of any other
flows.

To achieve this, three major challenges arise as fol-
lows. First, the existing two-level scheduling framework
equipped with the FQ-CoDel and AFS mechanisms has
evolved to address many issues, so LAST-PQ should retain
this framework while giving priority to VR flows. Second,
LAST-PQ needs to determine potential demand violations
over time by obtaining statistics of packet latency from the
kernel driver and comparing them with the corresponding
latency demands configured from the user space. Third,
LAST-PQ should prioritize VR flows for transmission by
considering potential demand violations at runtime.

We propose three major components in LAST-PQ to
address the above three challenges, respectively, as il-
lustrated in Figure 7: two-level priority queueing, cross-
layer delay controller, and latency-aware scheduler. The
two-level priority queueing incorporates a prioritized flow
queue and a prioritized TID queue into the flow-level and
device-level schedulers, respectively, and lets them operate



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Cross-layer Delay Controller
|r Normal | ‘r Marked | Delay Delay Gradient Flows
| Packets | | Packets [ Marker Al o;ithm demand
User space  —— I
‘ [E— Ceepr ]
Kernel space | Totency
DL od N Pri}rity ﬁ;ﬂfﬁfﬂ, swistcs | Latency-aware Scheduler
ew
Flow-level Flows Flows Flows Cross-layer Throttler
Scheduling Illﬂ Hﬂm} Iﬂ“ HWQ Draining Estimation
(FQ-CoDel) e Monitoring Aggregation Adaption
Dequeue Scheduler Function
. oid New TID with TID with Priority
Device-level TiDs _ Negative TIDs Non-empty Non-empty __TIDs Hooked
Scheduling Hl] deficit ”HHH ~.| old/new flows | | priority flows HH scheduling
(AFS) %
‘ Prioritized TID Dequeue Scheduler }

Fig. 7: LAST-PQ solution architecture.

on top of the original scheduling operation. The cross-layer
delay controller dynamically adapts a permitted queueing
latency for each VR flow to prevent potential demand
violations in a closed-loop fashion. It considers both the
latency demand and the feedback of latency statistics. The
packets belonging to each VR flow are marked with high
priority and the permitted queueing latency.

Based on the permitted queueing latency, below which
the sum of the software and hardware queueing delays
shall be maintained, the latency-aware scheduler deter-
mines whether VR packets should take precedence at
runtime. This determination is made by considering the
software queueing latency that the VR flow’s queue has
experienced and the estimated hardware queueing latency
that will be experienced by the flow’s next transmission.
VR packets that are anticipated to violate the permitted
queueing latency are prioritized, and their corresponding
flow queues are then tagged as urgent, prioritizing them
for transmission.

Notably, LAST-PQ focuses on enhancing the latency
performance of downlink VR flows at the Wi-Fi AP.
While uplink control packets are crucial for the interac-
tive functions of VR applications, they inherently receive
higher priority for channel access due to their small traffic
volume, resulting in lower latency. We will now present
each design component.

Two-level Priority Queueing. We introduce a pri-
oritized queue into both the flow-level and device-level
scheduling components. Each of these parts operates on
top of a two-tier queue structure, which includes old and
new queues. In each part, a packet queue for each flow
marked with high priority is inserted into the prioritized
flow queue, in addition to being placed in the old or
new queue based on the original FQ-CoDel operation.
Similarly, each TID with a non-empty prioritized flow
queue is placed in the prioritized TID queue while also
remaining in the old or new TID queue according to the
default AFS mechanism. Therefore, the prioritized flow
and TID queues are designated to hold the VR flows and
their corresponding TIDs, allowing each VR flow to be
prioritized for transmission. Simultaneously, these queues
remain involved in the FQ-CoDel and AFS scheduling

62

operations. Importantly, if a VR flow’s latency demand
can be consistently satisfied by the default scheduling
operation (e.g., in the absence of other traffic flows), the
prioritized transmission will not be triggered.

The two-level operation continues its sequence from
bottom to top, now incorporating a prioritized scheduling
action before proceeding with its standard operation on
the old and new queues. When presented with a trans-
mission opportunity at the device-level scheduling, the
prioritized TID dequeue scheduler selects a prioritized
TID with any urgent flow queue. Subsequently, the flow
scheduler dequeues packets from that flow queue. In cases
where multiple prioritized TIDs each have at least one
urgent flow queue, or a prioritized TID has multiple
urgent flow queues, the selection is based on the one with
the greatest deficit value at the device-level or flow-level
scheduling, respectively. If there is no prioritized TID, the
schedulers revert to their original operation.

Cross-layer Delay Controller. The controller pro-
vides an interface in the user space for VR applications
to prioritize VR flows based on flow information with
specified latency demands (i.e., ld; g). For each VR flow
1, the controller adapts a permitted queueing latency l; ,q
using a window-based delay gradient algorithm. This al-
gorithm takes into account the flow’s latency demand and
the latency statistics collected by a monitoring function
per time window ¢, (20 ms in our implementation) in
the kernel space. The latency statistics are transmitted
from the kernel space to the user space via the extended
Berkeley Packet Filter (eBPF) function, while the permit-
ted queueing latency is communicated to the kernel space
through the socket buffer.

At each time ¢, the Sth latency, l; g(t), is collected.
Given a VR flow’s latency demand Id; 3, we maintain the
runtime latency, I; g(t), below this demand by adjusting
li.pq- The rationale is that when [; 5(t) is approaching or
exceeding ld; g, the VR packets should spend less time
in the queue, necessitating a decrease in [; 4. Conversely,
when l; g(t) is too small, I; 4 is increased, ensuring the flow
receives precedence minimally without disproportionately
impacting other traffic flows.

We thus develop a window-based delay gradient algo-
rithm. As shown in Figure 8, the algorithm aims to bind
the runtime latency (i.e., I; g(t)) measured in each time
window to oscillate within a desired range slightly lower
than the latency demand (i.e., Id; g). The oscillation range
is set between the high threshold (th; g) and low threshold
(thi), which are configurable with two parameters: a
guard interval (l; ¢r) and an oscillation ratio (c;). Thus,
thi,H = ldiﬁ — li,GI and thi,L = (1 — Oti) X ldivfg.

The algorithm adjusts the permitted queueing latency
(i.e., l; pq) based on the runtime latency (i.e., l; g) in three
different cases as follows.

e l;3(t) > th;m: the latency demand is about to be
violated; the adaptation undergoes a multiplicative



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Multiplicative decrease phase

»
>

Runtime Latency

Packet Latency

Multiplicative increase phase

Fig. 8: Window-based delay gradient approach.

decrease (MD) with a factor, denoted as MD;, as
li,pq(t) = lz‘,pq(t - 1) * (1 — MDZ)

o 1; (t) < th; : the obtained latency is too small; the
adaptation undergoes a multiplicative increase (MI)
with a factor, denoted as MI;, as l; pq(t) = i pg(t —
1)*(14+ ML).

o thi 1 < lig(t) < th; g: the obtained latency remains
in the safe oscillation range with the latency change
Lien(t) = Lig(t) — L p(t — 1) and [; pg(t) is calculated
with gradients as follows:

MD;X1l; op

li,pg(t —1) x (1 — 4:;;11.,11711._’3'@71))
li;Pq(t) = AL XL ch
l; t—1 —_—
qu( - )+ li,B(t—l)—thi,L)

if licn(t) >0

)
if Lien(t) <0

where AI; is a factor of additive increase (AI).

Generally, [; ,, is adapted in the opposite direction of
the runtime latency change. For the first two cases where
l; p exceeds the desired range, multiplicative factors are
used to rapidly adapt l; pq. In the third case, to keep I; 5
oscillating within the range, the adaptation is set to be
proportional to the gradient of the runtime latency change.
Moreover, a conservative approach with multiplicative
decrease and additive increase on [; p, is taken to prevent
l; p from going beyond the desired range.

Latency-aware Scheduler. The latency-aware sched-
uler notifies the flow-level scheduler of each priority flow
potentially going to violate its latency demand to tag its
flow queue as urgent. As depicted in Figure 7, it consists
of three components: cross-layer throttler, hardware queue
(HWQ) draining estimation, and aggregation adaptation.
The cross-layer throttler determines any potential demand
violations by checking whether any flow’s expected queue-
ing latency, denoted as [; ., has exceeded the permitted
queueing latency (l; ) marked by the delay controller.
For each flow, when the violation occurs, its flow queue is
tagged as urgent to be prioritized. The expected queueing
latency is the sum of the software and hardware queueing
delays, represented as lsq and [p4, respectively: l;. =
lsq + lhq.

The software queueing delay is calculated based on the
time the earliest packet in the flow’s queue has been
queued, while the hardware queueing delay is estimated
by the HWQ draining estimation module since it has not

been experienced by the queued packets. The expected
hardware queueing delay for a new frame depends on the
time it takes for its preceding frames in the hardware
queue to be drained. Given the number of the preceding
frames, denoted as N4, the expected hardware queueing
delay can be calculated as follows: [, = ctt—f—ZiV’“? (Tore+
Tac+Ti qir) + Tyuard, where Tpyy is the average contention
time, Tinqe is the MAC overhead, 7Tj . indicates the
airtime needed for the transmission of frame 7, and Tyyqrd
is the guard period used to prevent the latency from being
underestimated due to channel dynamics. Notably, the
first T, represents the contention time of the new frame,
whereas the summation calculates how much time the
new frame needs to wait for its preceding frames in the
hardware queue.

We estimate the average contention time using a moving
average by considering two cases. First, when a frame is
scheduled into an empty hardware queue, the contention
time is calculated by subtracting the time the frame is
enqueued to the hardware, the MAC overhead, and the
frame’s transmission airtime, from the time the frame’s
ACK is received. Second, when the hardware queue is not
empty, the contention time is estimated by subtracting
the frame’s transmission airtime and the MAC overhead
from the time interval between its ACK and the preceding
ACK. The MAC overhead is calculated as the sum of the
preamble, short interframe spaces (SIFS), and the frame’s
ACK transmission airtime. The airtime of a frame can
be calculated based on the frame’s size divided by the
physical rate, for which the most recently used rate is
chosen from the rate adaptation module.

However, in some cases where the estimated latency for
a prioritized flow is only slightly smaller than the permit-
ted latency, and a non-prioritized frame is then scheduled
to the hardware queue, the prioritized flow may be sched-
uled late and suffer from long latency, especially when the
scheduled non-prioritized frame has a large aggregation
size and requires a long transmission time. To address this
issue, we introduce aggregation adaptation, which reduces
the allowable aggregation size for non-prioritized flows
when any prioritized flows exist; otherwise, it reverts to
the maximum value.

V. IMPLEMENTATION

We implement LAST-PQ on a Linux-based PC with an
Atheros Wi-Fi card using the open-source ath9k driver.
Below, we describe four major implementation issues.

Runtime Collection of Packet Latency Statistics.
The delay controller in the user space relies on eBPF
and kprobe to collect per-packet latency results from the
wireless MAC stack and driver in the kernel space. The
BPF Compiler Collection (BCC) toolkit is employed to
develop a Python program that uses eBPF and kprobe to
insert hooks into some kernel functions corresponding to
the latency results.

63



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

I I
e o o ow Y AP
M8 M7 M6
os3 oM O ® Mobile Clients
S8
O oM O Static Clients
S4
oMl
S5 i
il B G '

Fig. 9: The experimental floor plan.

-
(=1
(=}

2100 El — 2 SI —

EV E2 -— E g0 $2—

> 80\ E3 —— > S3 —-

= p 2 60\

2 60} 8

= = 40

= 40 N N N = [ [ -

D20 | ettt Loy 2N 520 f ety

00 5 10 15 20 25 30 OO 5 10 15 20 25 30

Time (s) Time (s)

(a) 25 ms latency. (b) 25/20/15 ms latency.

Fig. 10: Evaluation of the LAST-PQ runtime control with different
latency requirements.

High-priority Mark with Permitted Queueing La-
tency. We leverage an existing field of the socket
buffer, mark, which is a 32-bit integer value, for the high-
priority mark. The mark field can be configured by the
delay controller at runtime using the iptable command
as “-j MARK --set-mark $priority mark”, where the
priority mark is a specified 32-bit value serving as the
high-priority mark. In this mark, the top 16 bits are chosen
as a specific value different from other usages (“b45f” in
our implementation), whereas the bottom 16 bits are used
to carry the value of the permitted queueing latency.

Priority Queues with Urgent Tags. We add a prior-
itized flow queue and a prioritized TID queue to the data
structures of the flow-level and device-level schedulers,
respectively. These structures are located in the wireless
MAC stack and ath9k driver, respectively. Additionally,
the urgent tag is appended to the per-flow data structure.

Parameters Determination. We determine the val-
ues of the aforementioned parameters by conducting a
mobility experiment in a multi-flow, multi-client case. This
experiment involves varying channel conditions and con-
gested traffic, requiring LAST-PQ to have timely schedul-
ing adaptation. The obtained values from this challenging
case should work for most scenarios. We vary MD, MI,
and Al to examine which values of them can provide
latency closest to 20 ms at the 95th percentile; they are
0.3, 0.3, and 5000, respectively. Notably, the values of the
other parameters, i.e., Tyuard, lgr, and «, are determined
empirically; they are 1 ms, 1 ms, and 0.5, respectively.

VI. EVALUATION

In this section, we evaluate the effectiveness of the
runtime latency control for LAST-PQ and assess it in

three cases, all with congested traffic: static clients, mobile
clients, and static clients with the EDCA enhanced by
LAST-PQ. We compare the performance of LAST-PQ
with that of the updated scheduling method in the Linux
kernel. Figure 9 shows the experimental floor plan, and
the other experimental settings are similar to those in
the case study (see Section IIT) unless explicitly specified.
Notably, the focus of the latency demands is on the 95th
percentile; however, LAST-PQ can also be applied to other
percentiles.

Runtime Latency Control. @ We examine whether
LAST-PQ can meet various latency requirements at run-
time, considering three locations with distinct channel
conditions. As depicted in Figure 10, most latency results
remain below the specified 25 ms latency requirement,
with only a few exceptions. These exceptions are primarily
attributed to sudden channel or traffic changes. However,
the subsequent latency results are effectively managed
to meet the requirement. To further assess LAST-PQ’s
adaptability, we modify the latency requirement of the
VR flow sequentially to 25, 20, and 15 ms. LAST-PQ
successfully controls the latency of the VR flow to align
with the evolving latency requirements, and any occasional
exceptions are promptly smoothed out.

Static Case. We vary the number of coexistent non-
VR clients while simultaneously adjusting the number
of concurrent non-VR flows at the VR smartphone. The
performance of a VR flow streaming to a smartphone at
the farthest location, S6, is evaluated, and non-VR clients
are deployed around S5. Figures 11a and 11b illustrate the
95th latency performance for the Linux and LAST-PQ
scheduling methods, respectively. The Linux scheduling
method can elevate the VR latency to as much as 99.39 ms,
whereas LAST-PQ consistently maintains the VR latency
below 20 ms, with a maximum of only 19.98 ms. LAST-PQ
achieves a remarkable reduction in latency by 79.89%.

We also observe that the VR flow, exhibiting less ag-
gressive traffic, can only achieve a throughput of 2.06-
7.30 Mbps using the Linux scheduling, as demonstrated
in Figure 11lc. It is noteworthy that the VR smartphone
is located farther away than the other clients, resulting in
its aggregate throughput from both VR and non-VR flows
being much lower than theirs. However, LAST-PQ can
ensure the VR flow’s throughput in such heavy congestion
cases, maintaining a throughput ranging from 43.65 Mbps
to 45.27 Mbps, as illustrated in Figure 11d.

Mobility Case. We then assess the real-time adapt-
ability of LAST-PQ in mobility cases, where the wire-
less channel condition of the VR smartphone undergoes
constant changes, resulting in variations in the VR flow’s
latency over time. The VR smartphone is moved from
M1 to M8 at a speed of 1 m/s and then returns to
M1, while concurrently having 5 non-VR flows at the VR
smartphone and 5 non-VR clients. In contrast, the Linux
scheduling method struggles to maintain the VR flow

64



1

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Z="
0.8 S
v
EO'G //'/
Q04 //+" VR+2F2C
4,/ VR43F3C —--
0.2 Vi VR+4FAC - —-
o L&t VR+5F5C — -

0 20 40 60 80 100 120
Latency (ms)

&
0.8 /
0.6 |
8,11
Q0.4 VR+2F2C
f VR+3F3C —--
0.2 VR+4FAC - —-
ol VR+5F5C ——

0 20 40 60 80 100 120
Latency (ms)

Traffic Cases

2150 = 2 150 =

S 120 FLOW S 120 FLOW

< 9 & Z 9% &

£ 60 £60(g g 4 =

= =

E 38 NI P E 38 Y M o e
VR+2C VR+3C VR+4C VR+5C VR+2C VR+3C VR+4C VR+5C

Traffic Cases

(a) Linux scheduling.

(b) LAST-PQ scheduling.

(c¢) Linux scheduling. (d) LAST-PQ scheduling.

Fig. 11: Multi-client, multi-flow cases: the latency performance of a VR flow varies with number of coexistent non-VR flows (at the VR

smartphone) and non-VR clients .

MI to M8

Lat. (ms) FPS

10 20 30 40 50 60
Time (s)

(a) Linux default scheduling.

—————— M8 to M1l ——
S

w N e e
= 10

~ (e

Z 200

5 1020 30 40 50 60

Time (s)

(b) LAST-PQ scheduling.

Fig. 12: Mobility case: the FPS and latency performance of a VR flow change over time while the VR smartphone is moving from M1 to M8

and from M8 to M1.

even in static congestion cases, performing even worse in
scenarios involving mobility. As illustrated in Figure 12a,
the average FPS values are only 1.41 and 1.50 for the M1-
to-M8 and M8-to-M1 cases, respectively. The 95th latency
requirement is consistently unmet, with 98.16% of values
above 60 ms and the maximum value reaching 322.64 ms.

Figure 12b depicts the FPS and latency performance for
LAST-PQ. It is observed that LAST-PQ can consistently
meet the latency requirement below 20 ms, taking 1.70 s
and 1.74 s from the start for the M1-to-M8 and M8-to-M1
cases, respectively. However, it takes 8.08 s and 12.12 s, re-
spectively, to reach the full 30 FPS. Subsequently, LAST-
PQ consistently satisfies the latency requirement with
average FPS values, 26.86 and 27.56, respectively, except
for the time period after 53.5 s in the M1-to-M8 case.
Although this latency increase temporarily causes the FPS
to drop to 20, it swiftly recovers within 9.1 s. The sudden
latency rise is attributed to the deterioration of the VR
smartphone’s wireless channel while moving towards the
farthest location, MS.

Enhanced EDCA. We further apply LAST-PQ to
enhance the high-priority categories to be latency-aware.
It can prioritize VR flows while satisfying different latency
demands. In the following experimental results, we take
the highest-priority access category, VI, as an example,
following a setup similar to the EDCA case study in
Section ITI-C.

In congested cases where all non-VR flows at the VR
smartphone and non-VR clients’ flows are configured to
stay in the VI, LAST-PQ can still meet the latency
requirement of a coexistent VR flow, as illustrated in
Figure 13a. Moreover, by considering two VR flows and
three 50 Mbps TCP flows with latency requirements of

_—
08 | 0.8
w06) | 0.6 _
= ! = VRl —
Q04 J Q04+t i VR-2
| 3F3C —-- b TCP-1 - —-
0.2 i 4F4C - —- 0.2 TCP-2 — -
okt SFSC —— 0 TCP-3 -
0 20 40 60 80 100 120 0 10 20 30 40 50 60

Latency (ms)

(a) A VR flow with multiple non-VR(b) Coexistent VR/non-VR flows
flows/clients. with different demands.

Latency (ms)

Fig. 13: All traffic flows stay in the VI access category.

20 ms and 30 ms, respectively, LAST-PQ successfully
meets the requirements of all these five flows, as shown in
Figure 13b. The 95th latency values for the VR and TCP
flows are 16.18-17.29 ms and 23.86-24.48 ms, respectively.

VII. RELATED WORK

Packet latency in Wi-Fi networks can accumulate from
four major functions of the MAC layer and below: queue
management [3], [5], [12]-[19], packet scheduling [4], [20]—
[22], channel access [23]-[30], and transmission delay [31],
[32]. In this section, we primarily focus on relevant studies
within the queue management and packet scheduling func-
tions, as these are closely related to the present study. Ad-
ditionally, we explore current traffic scheduling solutions
proposed for VR applications in the 5G network.

Queue Management. AQM [12], designed to address
the bufferbloat issue [13], [14], is considered a best practice
for queue management. It effectively reduces queue conges-
tion and improves latency by dropping packets from con-
gested queues. Numerous studies have introduced drop-
ping policies, including RED [15], ARED [16], CoDel [5],
and PIE [17]. More recently, for fairness in queueing, FQ-
CoDel [3], [18] and FQ-PIE [19] have been proposed to

65



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

enhance AQM with flow fairness. Notably, FQ-CoDel has
become the default AQM algorithm in the mainline of
Linux. However, it does not allow for the prioritization
of VR flows.

Packet Scheduling. The packet scheduling operation
at the AP can be decomposed into two parts: flow/client
scheduling and frame aggregation scheduling. In a trans-
mission opportunity, the former first schedules a client and
its corresponding flows, and the latter then determines
frame size and selects packets for frame aggregation. Vari-
ous flow/client scheduling solutions [4], [20]-[22] have been
proposed for Wi-Fi networks in recent years. Some aim
to achieve airtime fairness among clients by considering
transmission time [4], [20] and channel quality [21]. In
an effort to enhance the Quality of Experience (QoE)
for video streams, [22] proposes a scheduling algorithm
that allocates resources to clients with video streams
based on their congestion levels. However, this study is
not practical without compliance to the current Wi-Fi
scheduling architecture; it has not been implemented or
evaluated on commodity devices.

As for frame aggregation scheduling, [33] dynamically
adapts frame aggregation size based on the AC, taking
QoS requirements into consideration. Several studies [31],
[34], [35] have also been proposed to reduce retransmission
overhead caused by losses in frame aggregation. While
these studies can effectively reduce latency from the frame
aggregation perspective, they may not guarantee latency
performance for specific VR flows.

Low-latency Scheduling for VR Flows. There have
been several low-latency scheduling solutions [36]-[39]
introduced for VR flows in cellular networks. Two of
them specifically focus on supporting VR applications
with Ultra-Reliable and Low Latency Communications
(URLLC) in 5G networks. [36] introduces a joint solution
that can perform link adaptation and resource allocation
simultaneously to achieve low latency for the URLLC.
[37] develops a joint multi-user preemptive scheduling
mechanism to cross-optimize spectral efficiency and packet
latency. Additionally, [38] designs a multi-user MAC
scheduling scheme for VR traffic in 5G networks, while [39]
supports VR applications over LTE by presenting a client-
side solution that leverages a cross-layer design and rich
side channel information. These studies, primarily focusing
on the cellular network, cannot be directly applied to the
Wi-Fi network due to two major reasons. First, the cellular
network has a different packet scheduling architecture
from the Wi-Fi network, which contains the AC classifier
and the two-level flow and device scheduling. Second,
cellular network transmissions are based on centralized
scheduling operations, while Wi-Fi network transmissions
rely on distributed channel contention. In contrast, our
proposed solution, LAST-PQ), is designed based on the Wi-
Fi packet scheduling architecture and has been evaluated
to be effective on practical off-the-shelf Wi-Fi platforms.

66

VIII. DISCUSSION

In this section, we discuss three major issues regarding
LAST-PQ.
Applicable to New Wi-Fi Standards. @ While new
Wi-Fi standards, such as IEEE 802.11ac/ax, have been
introduced over the years to address contention problems
to some extent, VR flows may still encounter challenges
without a latency-aware scheduling solution like LAST-
PQ. Despite the higher data rates provided by IEEE
802.11ac/ax compared to IEEE 802.11n, Wi-Fi devices,
especially those with aggressive TCP flows and poor
link quality, can congest a Wi-Fi AP and lead to se-
vere contention. Additionally, although the 802.11ax/be
standards incorporate OFDMA (Orthogonal Frequency
Division Multiple Access) technology allowing multiple
clients to communicate with the AP simultaneously, the
proliferation of Wi-Fi devices, such as Wi-Fi IoT, in a
Wi-Fi network can still result in severe contention. Hence,
LAST-PQ remains essential to prioritize VR flows in
new Wi-Fi networks, especially during instances of severe
contention.

Applied to OFDMA-based Wi-Fi Network. The
Wi-Fi network has supported the OFDMA technology
since the IEEE 802.11ax standard, and our developed
LAST-PQ can also be applied to it. It needs to cooperate
with the OFDMA scheduling solution deployed at the Wi-
Fi AP. During each transmission opportunity, LAST-PQ
functions normally, emphasizing urgent flow queues, and
the OFDMA scheduler considers them with high priority
for participation in an OFDMA transmission. If there is
only one prioritized TID with urgent flow queues, the
OFDMA scheduler can perform a traditional single-user
transmission for the prioritized client. However, if there are
multiple prioritized clients, possibly with non-prioritized
ones, the OFDMA scheduler can schedule them in an
OFDMA transmission to transmit data concurrently.

Limitations of LAST-PQ. LAST-PQ can support
multiple VR devices and multiple low-latency flows on
a single device, based on the scheduling of prioritized
TID and flow queues. However, the number of supported
devices and flows is limited. This limitation arises be-
cause LAST-PQ prioritizes low-latency devices/flows by
suppressing other flows at the same AP. Therefore, the
supported capacity approximates the amount where the
required low-latency demands can be met assuming no
other intra-AP flows. However, the actual capacity might
be lower than expected, as non-prioritized transmissions
may cause head-of-line blocking against urgent transmis-
sions. This occurs when non-prioritized transmissions are
scheduled into the hardware queue at a time without
any urgent requests, but they are not completed before
an urgent request appears and cannot be interrupted
according to the wireless NIC operation framework. It is
important to note that the capacity can be affected by
wireless channel conditions where the low-latency devices



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

are located and the traffic demands from neighbor APs.
As a result, the capacity can vary over time.

IX. CONCLUSION

Enabling common Wi-Fi networks to support VR appli-
cations holds promise due to its low-cost and convenient
merits. However, our experimental case study reveals that
the current Wi-Fi scheduling framework poorly supports
VR flows in congested cases. To address this, we have
developed LAST-PQ, a latency-aware scheduling solution
designed to ensure the latency performance of elephant
VR flows. LAST-PQ is compliant with the current Wi-
Fi scheduling framework, making it applicable to com-
modity Wi-Fi devices. Its effectiveness has been confirmed
through evaluations based on a prototype. While the
experiments in this work are conducted on conventional
IEEE 802.11n platforms, mainly due to a part of the
scheduling framework being implemented in non-released
firmware for current Wi-Fi platforms (e.g., 802.11ac/ax),
the proposed LAST-PQ can also be applied to them.

ACKNOWLEDGMENT

We appreciate the insightful and constructive com-
ments from the anonymous reviewers. This work is
supported in part by the National Science Foundation
(NSF) under Grants No. CNS-2246050, CNS-2246051,
and CNS-2321416, and by the National Science and
Technology Council (NSTC) under Grants No. 110-2221-
E-A49-031-MY3, 112-2628-FE-A49-016-MY3, 112-2218-E-
A49-023, and 112-2634-F-A49-001-MBK. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors only and do not
necessarily reflect those of the NSF and NSTC.

REFERENCES

[1] “Virtual & augmented reality: Understanding the race for the
next computing platform,” Report, Goldman Sachs, Jan. 2016.

[2] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications - Amendment 8: Medium Access
Control (MAC) Quality of Service Enhancements, IEEE Std.
802.11e, 2005.

(3] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumagzet, “The flow queue CoDel packet scheduler and active
queue management algorithm,” RFC 8290, 2018.

[4] T. Heiland-Jgrgensen, M. Kazior, D. Téaht, P. Hurtig, and
A. Brunstrom, “Ending the anomaly: achieving low latency and
airtime fairness in WiF1i,” in Proc. USENIX Annual Technical
Conference (ATC’17), Santa Clara, CA, Jul. 2017.

[5] K. Nichols, A. McGregor, V. Jacobson, and J. Iyengar, “Con-
trolled delay active queue management,” RFC 8289, 2018.

[6] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda,
“Performance anomaly of 802.11b,” in Proc. IEEE International
Conference on Computer Communications (INFOCOM’03),
San Francisco, CA, USA, Mar. 2003.

[7] “OpenWrt,” 2024. [Online]. Available: https://openwrt.org/
releases/18.06/start

[8] “Steam  VR,” 2024. [Online].  Available:  https://
steamcommunity.com/steamvr
[9] “Trinus virtual reality,” 2024. [Online]. Available: https:

//www.trinusvirtualreality.com/

67

[10] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang,
and M. Gruteser, “Cutting the cord: designing a high-quality
untethered vr system with low latency remote rendering,” in
Proc. ACM International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys’18), NY, USA, Jun. 2018.

[11] “Cloud AR/VR whitepaper,” White Paper, GSMA Future Net-
works, Apr. 2019.

[12] E. F. Baker and E. G. Fairhurst, “IETF recommendations
regarding active queue management,” RFC 7567, 2015.

[13] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the in-
ternet: Networks without effective agm may again be vulnerable
to congestion collapse,” ACM Queue, vol. 9, no. 11, pp. 40-54,
Nov. 2011.

[14] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys, “Bufferbloat:
What’s wrong with the internet? a discussion with vint cerf,
van jacobson, nick weaver, and jim gettys,” ACM Queue, vol. 9,
no. 12, pp. 10-20, Dec. 2011.

[15] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Net-
working, vol. 1, no. 4, pp. 397-413, Aug. 1993.

[16] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue
management,” AT&T Center for Internet Research at ICSI,
Tech. Rep., Aug. 2001.

[17] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg, “PIE: A lightweight
control scheme to address the bufferbloat problem,” in IEEE
International Conference on High Performance Switching and
Routing (HPSR’13), Taipei, Taiwan, Jul. 2013.

[18] T. Hpiland-Jgrgensen, P. Hurtig, and A. Brunstrom, “The good,
the bad and the wifi: Modern AQMs in a residential setting,”
Computer Networks, vol. 89, pp. 90-106, Oct. 2015.

[19] G. Ramakrishnan, M. Bhasi, V. Saicharan, L. Monis, S. D.
Patil, and M. P. Tahiliani, “FQ-PIE queue discipline in the linux
kernel: Design, implementation and challenges,” in Proc. IEEE
LCN Symposium on Emerging Topics in Networking (LCN
Symposium’19), Osnabriick, Germany, Oct. 2019.

[20] R. Garroppo, S. Giordano, S. Lucetti, and L. Tavanti, “Provid-
ing air-time usage fairness in IEEE 802.11 networks with the
deficit transmission time (dtt) scheduler,” Wireless Networks,
vol. 13, pp. 481-495, Aug. 2007.

[21] K. Gomez, R. Riggio, T. Rasheed, and I. Chlamtac, “On efficient
airtime-based fair link scheduling in IEEE 802.11-based wireless
networks,” in Proc. IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIRMC’11),
Toronto, ON, Canada, Sep. 2011.

[22] S. Nosheen and J. Y. Khan, “High definition video packet
scheduling algorithms for IEEE 802.1lac networks to en-
hance QoE,” in Proc. IEEE Vehicular Technology Conference
(VTC’20), Antwerp, Belgium, May 2020.

[23] P. Serrano, A. Banchs, P. Patras, and A. Azcorra, “Optimal
configuration of 802.11e EDCA for real-time and data traffic,”
IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp.
2511-2528, Feb. 2010.

[24] C. Cano, B. Bellalta, and M. Oliver, “Adaptive admission
control mechanism for IEEE 802.11e WLANSs,” in Proc. IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’07), Athens, Greece, Sep. 2007.

[25] G. Cena, S. Scanzio, L. Seno, and A. Valenzano, “A fixed-
priority access scheme for industrial Wi-Fi networks,” in Proc.
IEEE Industrial Electronics Society (IECON’16), Florence,
Italy, Oct. 2016.

[26] 1. Syed, S. Shin, B. Roh, and M. Adnan, “Performance improve-
ment of QoS-enabled WLANSs using adaptive contention window
backoff algorithm,” IEEE Systems Journal, vol. 12, no. 4, pp.
3260-3270, May 2018.

[27] Y. Xiao, F. H. Li, and S. Choi, “Two-level protection and
guarantee for multimedia traffic in IEEE 802.11e distributed
WLANSs,” Wireless Networks, vol. 15, no. 2, pp. 141-161, Feb.
2009.

[28] Hyun-Jin Lee and Jae-Hyun Kim, “A optimal CF-Poll pig-
gyback scheme in IEEE 802.11e HCCA,” in Proc. Interna-
tional Conference on Advanced Communication Technology
(ICACT’06), Phoenix Park, South Korea, Feb. 2006.



2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

[29] A. Grilo, M. Macedo, and M. Nunes, “A scheduling algorithm
for QoS support in IEEE 802.11 networks,” IEEE Wireless
Communications, vol. 10, no. 3, pp. 36-43, Jun. 2003.

[30] G. Cecchetti, A. L. Ruscelli, A. Mastropaolo, and G. Lipari,
“Dynamic TXOP HCCA reclaiming scheduler with transmis-
sion time estimation for IEEE 802.11e real-time networks,” in
Proc. ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’12), New
York, USA, Oct. 2012.

[31] C. Li, C. Peng, S. Lu, X. Wang, and R. Chandra, “Latency-
aware rate adaptation in 802.11n home networks,” in Proc.
IEEE Conference on Computer Communications (INFO-
COM’15), Kowloon, Hong Kong, Apr. 2015.

[32] A. Chan, H. Lundgren, and T. Salonidis, “Video-aware rate
adaptation for MIMO WLANSs,” in Proc. IEEFE International
Conference on Network Protocols (ICNP’11), Vancouver, BC,
Canada, Oct. 2011.

[33] N. Hajlaoui, I. Jabri, M. Taieb, and M. Benjemaa, “A frame
aggregation scheduler for QoS-sensitive applications in IEEE
802.11n WLANS,” in Proc. International Conference on Com-
munications and Information Technology (ICCIT’12), Ham-
mamet, Tunisia, Jun. 2012.

[34] B. Maghat, M. D. Baba, and R. A. Rahman, “A-MSDU real
time traffic scheduler for IEEE 802.11ln WLANS,” in Proc.
IEEE Symposium on Wireless Technology and Applications
(ISWTA’12), Bandung, Indonesia, Sep. 2012.

[35] A. Saif and M. Othman, “SRA-MSDU: enhanced A-MSDU
frame aggregation with selective retransmission in 802.11n wire-
less networks,” Journal of Network and Computer Applications,
vol. 36, no. 4, pp. 1219-1229, Jul. 2013.

[36] G. Pocovi, K. I. Pedersen, and P. Mogensen, “Joint link adap-
tation and scheduling for 5G ultra-reliable low-latency commu-
nications,” IEEE Access, vol. 6, pp. 28 912-28 922, May 2018.

[37] A. A. Esswie and K. I. Pedersen, “Multi-user preemptive
scheduling for critical low latency communications in 5g net-
works,” in Proc. IEEE Symposium on Computers and Commu-
nications (ISCC’18), Natal, Brazil, Jun. 2018.

[38] M. Huang and X. Zhang, “MAC scheduling for multiuser wire-
less virtual reality in 5G MIMO-OFDM systems,” in Proc. IEEE
International Conference on Communications Workshops (ICC
Workshops’18), Kansas City, MO, USA, May 2018.

[39] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu, “Supporting
mobile vr in lte networks: How close are we?” Proceedings of
the ACM on Measurement and Analysis of Computing Systems,
vol. 2, no. 1, pp. 1-31, Apr. 2018.

68




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


