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Abstract—Due to the flexibility it offers, publish-subscribe
messaging middleware is a popular choice in Industrial IoT
(IIoT) applications. The Data Distribution Service (DDS) is a
widely used industry standard for these systems with a focus
on versatility and extensibility, implemented by multiple ven-
dors and present in myriad deployments across industries like
aerospace, healthcare and industrial automation. However, many
IoT scenarios require real-time capabilities for deployments with
rigid timing, reliability and resource constraints, while publish-
subscribe mechanisms currently rely on components that are not
strictly real-time capable, such as the Linux networking stack,
making it hard to provide robust performance guarantees without
large safety margins.

In order to make publish-subscribe approaches viable and
efficient also in such real-time scenarios, we introduce user-
space DDS networking transport extensions, allowing us to fast-
track the communication hot path by bypassing the Linux
kernel. For this purpose, we extend the best-performing vendor
implementation from a previous study, CycloneDDS, to include
modules for two widespread user-space networking technologies,
the Data Plane Development Kit (DPDK) and the eXpress
Data Path (XDP), and we evaluate their performance benefits
against four existing DDS implementations (OpenDDS, RTI
Connext, FastDDS and CycloneDDS). The CycloneDDS-DPDK
and CycloneDDS-XDP extensions offer a performance benefit of
31% and 18% reduced mean latency, respectively, as well as an
increase in bandwidth and sample rate throughput of up to 59%,
while reducing the latency bound by at least 94%, demonstrating
the performance and dependability advantages of circumventing
the kernel for real-time communications.

I. INTRODUCTION

Developing flexible, fast and future-proof communication
layers for systems is a challenge that many software projects
face, with a multitude of project requirements and constraints
often complicating the implementation of a seemingly simple
software component. This is the reason why industrial systems
have been leveraging communications middleware to out-
source this burden to off-the-shelf implementations ever since
the inception of the concept in 1968 [1]. For the Industrial
Internet of Things (IIoT), the publish-subscribe architecture
is a popular choice for message-oriented middleware because
of its ease-of-use and extensibility. There are a multitude
of publish-subscribe technologies, but one standard gaining
traction is the Data Distribution Service (DDS), an API and
protocol specification for distributed data-centric message ex-
change maintained by the Object Management Group [2] and

implemented in open-source and commercial systems backed
by a large variety of vendors.

DDS as a messaging middleware features multiple benefits
over the traditional socket communication model, including
reduced coupling and increased dependability/extensibility by
means of abstraction and encapsulation, as well as transpar-
ently handling communication life-cycle management, mes-
sage tracking and retransmission. All of these make DDS
an attractive candidate for adoption in IIoT scenarios, with
deployments including robotics systems (via the integration
into the Robot Operating System ROS2) [3], military com-
munications [4], mobile medical diagnosis equipment [5], and
factory automation [6, 7].

However, in many use cases we face reliability and timing
restrictions, which requires every component in the system to
offer real-time and reliability guarantees for the system as a
whole to be considered dependable. This runs contrary to the
pressure of adding ever more features into control systems,
leading them to be more versatile at the cost of complexity.
The latest push of integrating machine learning into time-
constrained systems only adds to the difficulty of guaranteeing
boundedness and reliability. These timing constraints are also a
problem for most communication frameworks, including DDS
implementations, as off-the-shelf middleware generally relies
on technologies that do not offer real-time functionality or tim-
ing guarantees natively, like the Linux networking stack [8].
Despite this, DDS has found its way into many timing-critical
applications, where careful configuration of DDS is necessary
in addition to using large performance safety margins, as only
this ensures safe system operations in both normal and adverse
conditions. However, further adoption is hindered by a lack of
studies showing reliable system operation under unfavorable
conditions, making it harder for application developers to trust
in the middleware’s resilience. We aim to advance this area
of soft-real-time guarantees by reducing the number of real-
time incapable components on the transmission path, allowing
us to shrink the safety margins and with that improve overall
performance, reliability and thus trustworthiness.

In this paper, we evaluate the existing soft real-time capa-
bilities of four vendors and extend a vendor implementation to
include support for two tried-and-tested user-space networking
technologies, drastically improving latency bounds and reduc-

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

979-8-3503-2603-1/24/$31.00 ©2024 IEEE 36



ing performance variability while further enhancing other key
performance metrics. We offer the following contributions:

• Analysis of performance considerations and software en-
gineering requirements when combining DDS with user-
space networking technologies,

• Extension of the best-performing vendor implementation
to include support for two major user-space networking
technologies, improving its soft real-time characteristics,

• Evaluation of the reliability and performance benefits of
both the DDS user-space networking extensions against
four DDS implementations using DDS-Perf cross-vendor
benchmarks.

To survey the state-of-the-art performance, we selected four
DDS implementations that are widely adopted in the DDS
community and that emphasize applications in IIoT scenarios.
Apart from their significant total market share, vendors devel-
oping these systems specifically advertise system performance
as a selling point. The first system, OpenDDS, is maintained
by Object Computing, and is open-source. RTI Connext by
Real Time Innovations is a performance-oriented but closed-
sourced commercial implementation. Further open-source im-
plementations examined include FastDDS (eProsima) and the
relatively new CycloneDDS (Eclipse Foundation).

We chose two user-space networking technologies, DPDK
and XDP, to demonstrate the usefulness of user-space net-
working for DDS due to their suitability for (Industrial-)
IoT applications: (1) Data-Plane Development Kit (DPDK),
a user-space networking technology maintained by the Linux
Foundation and often referred to as the de facto standard
for acceleration of packet processing [9], which relies on
specialized drivers to bypass the kernel and deliver packets
directly to DPDK-enabled applications; and (2) eXpress Data
Path (XDP), a Linux kernel mechanism that uses Berkeley
Packet Filters (BPFs) to do in-kernel packet processing outside
the regular network stack [10]. The former is ubiquitous in
performance packet processeing and the latter was recently
mainstreamed into the Linux kernel, thus both options are
production-ready and widely available. We will be examining
performance aspects of using the chosen network technologies
with DDS throughout this paper. To the best of our knowledge,
we offer the first implementations of user-space networking
extensions for any DDS system, which is available to the
public as open-source1.

The remainder of this paper is structured as follows: We first
introduce DDS and examine its current real-time capabilities
in Section II. The case for user-space networking and the two
chosen technologies is made in Section III. In Section IV,
we cover implementation aspects of the CycloneDDS exten-
sions and subsequently evaluate the performance obtained in
Section V. Finally, in Section VI we discuss the results and
possibilities for future work.

1Git Repository: https://github.com/caps-tum/cyclonedds-dpdk-xdp

II. DDS AND CURRENT REAL-TIME CAPABILITIES

The advantages of the publish-subscribe paradigm have
helped it spread throughout communications technologies,
with both middleware systems like MQTT and protocols like
IGMP adopting the pattern. It supports a strong decoupling
of sender and receiver, which makes it appealing for dynamic
networks of distributed systems. DDS is a pub-sub middleware
standard built for a very wide range of use-cases, and it brings
the necessary configurability and adaptability to suit many
applications. Due to implementations and backing by over a
dozen vendors and two decades of standard updates, the range
of deployments has grown and now pervades many sectors.
Unlike many of its competitors, DDS also does not rely on
a centralized broker or message queue but functions fully
distributed. Because industrial use-cases often prioritize reli-
ability, performance and resource-consumption requirements,
the ability to pick from a diverse set of implementations makes
DDS attractive for projects that need solutions tailored to their
needs. This diversity comes at the cost of complexity, though,
as assessing the capabilities of DDS as a whole requires
studying a range of implementations. To truly evaluate the
performance benefits of user-space networking for DDS, we
will consider four major DDS implementations, covering both
commercial and open source implementations.

A. Previous Work

From the beginnings of DDS with the standard’s finalization
in 2004 [2], OMG has continued to norm the DDS ecosystem,
publishing three further core standards and 15 auxiliary stan-
dards. These all regulate facets of the DDS ecosystem today,
specifying anything from programming language specific APIs
to wire formats for interoperability. It is not uncommon, how-
ever, to find vendor-specific extensions in place of standardized
mechanisms, as these often predate standardization. Because
of the lack of an official compliance certification process for
DDS, benchmarking DDS implementations is fairly challeng-
ing. Thus, cross-vendor benchmarking tools have been devel-
oped, like DDS-Perf [11] to hide the complexity of dealing
with multiple DDS vendors and to enable the evaluation of
performance in a platform-independent way.

In the past, other publish-subscribe messaging standards,
like OPC UA or ZeroMQ, have been assessed against one
or more DDS vendors [12, 13]. However, these studies lack
any analysis of specialized tuning for real-time aspects, such
as latency bounds. Previous work has also examined higher-
level protocols built on top of DDS, such as ROS2 for
robot communication [3]. An investigation was conducted to
evaluate DDS performance in the real-time context [14], which
found a reduction in latency jitter was possible by changing
network driver settings, however it focuses on just a single
and unnamed DDS vendor and a specific network card. Still
others have benchmarked the performance of different DDS
extensions, like DDS-XRCE, for resource constrained envi-
ronments [15], or the virtualization overhead of containerizing
DDS [16]. Many comparison studies are vendor driven, but in
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2013 an independent survey compared two DDS libraries to
each other (OpenSplice and RTI) [17].

Surprisingly, to the best of our knowledge there have
been no efforts to examine combining DDS with user-space
networking technologies, despite their well-known advantages
of minimizing kernel interference in communication for la-
tency and bandwidth [10], and the widespread adoption in
other disciplines, such as high-performance computing. Some
adjacent efforts are currently ongoing at the time of writing to
harmonize DDS with Time-Sensitive Networks (TSNs) [18],
however TSNs are a much more involved solution that requires
extensive hardware and software support to provide deter-
ministic Ethernet behavior. In contrast, user-space networking
is implemented mostly in software, leading to deployability
advantages. Additionally, while high hopes are placed on
DDS-TSN and some vendors already claim TSN support [19],
these developments are in very early stages and currently lack
production readiness. In fact, we have not yet been able to
reproduce any DDS vendor’s TSN demonstration. Meanwhile,
DPDK and XDP are very well established user-space network-
ing technologies, and can be seen as a compromise between
highly specialized TSN and widely-deployed traditional Linux
networking. It is here that we can start to explore accelerating
DDS using DPDK and XDP.

B. The Problem: Latency Bounds

Previously, Bode et al. conducted performance studies on
DDS using DDS-Perf across the four vendors. There is a
general performance study available [11], as well as a real-time
focused study [20]. Throughout the real-time focused study,
several hardware- and software-based tuning techniques were
applied to optimize the out-of-the-box performance of each
vendor, targeting the reference performance metrics provided
by DPDK’s Layer 2 benchmarking tool l2reflect. While
they were able to bring down average latencies to around
100 µs for the better performing systems (CycloneDDS, fol-
lowed by FastDDS), the maximum observed latencies among
3 million packets were still an order of magnitude higher, with
rare but significant latency spikes of up to 4000 µs for the worst
performing systems (OpenDDS) even after tuning. While this
far outperforms the out-of-the-box latency bounds (OpenDDS:
17400 µs), a latency outlier will still observe up to 40× the
mean observed latency [20].

A 0.0001% (or one-in-a-million) chance of a deadline
missed by 4 ms might seem insignificant, but this is rather
unacceptable for many types of industrial control systems.
Consider a piston engine controller that actuates ignition
of the combustion chamber. The controller needs to actuate
the ignition according to the input parameters with very
reliable timing, potentially thousands of times per second.
At a signal rate of 1 kHz (1000 occurrences per second),
an outlier occurs once every 15 minutes, which can cause
either service outage (engine stall) or potential damage to the
machinery through e.g. misfires if the delayed signal arrival
is not handled correctly. Consequences are not just limited
to property damage, a similar mean time between failures

(MTBF) to meet the deadline in a life-support system such as
an oxygen flow monitor would mean opening a window for
undetected dangerous conditions, failing to trigger necessary
alarms and thus posing obvious health and safety risks. While
redundancy is often employed to reduce risks of failure, it
can only try to mitigate the effects but cannot eliminate the
root cause of the failure. Clearly, both the rate of occurrence
of outliers and their magnitude need to be further reduced
before we can consider introducing DDS as a soft-real-time
technology suitable for these applications.

III. THE CASE FOR USER-SPACE NETWORKING

Traditional real-time applications are implemented close to
the hardware, often with embedded technology stacks that are
lightweight and purpose-built. DDS however, not being a tech-
nology aimed solely at real-time applications and their con-
straints, sits on top of a much more heavy-weight technology
stack, with a typical setup relying on a fully fledged operating
system (in our case Jupiter, a real-time flavor of Linux) and
the applications and drivers that come with it. The ability to
use commodity hardware and software offers a multitude of
advantages for development and operations/maintenance, but
each additional layer of abstraction and isolation makes it more
difficult to provide reliability and timing guarantees across the
entire stack. Furthermore, technology stacks are growing in
size and complexity, with the advent of connected, smart and
AI-enabled devices only adding to the existing difficulties.
Whereas an application running on a programmable micro-
controller typically has direct and immediate hardware access
to its communication facilities, a message transmission on a
typical server system traverses many layers of software and
hardware before arriving at its destination.

When looking at the technology stack that a sample (DDS
term for a message/packet) needs to traverse during delivery
(Figure 1), it may be surprising that the DDS implementa-
tions can even reach the average performance of real-time
oriented technologies as demonstrated by Bode et al. [20].
Especially the path through the kernel is often expensive, as
the write and read system calls cause processor mode
switches and management overhead that make the call alone
around 100-500 times more expensive than a regular function
call on x86-64 [21], and that overhead is incurred before
the kernel even starts doing anything useful. Afterwards, the
packet needs to traverse the kernel I/O routines, the network
stack and the NIC driver before being sent off over the
wire. Repeating this process thousands of times per second
is therefore not only expensive, but also prone to interference
from resource contention, which can cause critical delays in
delivery and unexpected packet delay variation. Many DDS
systems take steps to minimize the effects of this problem, e.g.,
CycloneDDS uses vectored I/O using readv and writev
to reduce the total number of system call invocations. How-
ever, the problem remains that all packets need to eventually
traverse the kernel and its real-time incapable network stack
twice on the critical transmission path, or four times when
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Fig. 1. The technology stack that a DDS sample (DDS term for a
message/packet) needs to traverse downwards on the publisher and upwards
on the receiver. The many software layers make it difficult to provide timing
or reliability guarantees as each layer can introduce unexpected delays.

a round-trip is necessary to handle, e.g., acknowledgements
during reliable message delivery.

DDS is not the first communication system that encounters
this problem. Disciplines, such as high performance computing
or high-throughput packet processing, have already struggled
against similar issues with performance-critical networking.
Eventually, the idea was born to circumvent the kernel entirely
and thus cut out several layers of software from the critical
path. This technology is now known as user-space networking,
allowing a user-space application or library (such as DDS) to
communicate directly with the hardware in user code without
involving the kernel and its related security mechanisms (ex-
cept for initial communication setup, which is still secured by
the kernel). While this has obvious performance improvement
potential, it comes at the cost of losing many of the services the
kernel offers in the first place, such as resource sharing, per-
sample security or safety measures, and memory management.
Despite these drawbacks, user-space networking is still viable
for specialized deployments, especially in scenarios where
dedicated resources can be made available, such as in high
performance computing or embedded use-cases. To enable
users of DDS to leverage the advantages offered by user-space
networking technologies, we adapted a high-performance DDS
implementation (CycloneDDS) to work with the DPDK and
XDP user-space networking technologies to examine potential
performance and reliability advantages. We implement this
functionality as two extension modules, CycloneDDS DPDK-
L2 and CycloneDDS XDP-L2, that operate directly on Layer 2
Ethernet to facilitate hardware-accelerated message exchange.

A. DPDK

The Data-Plane Development Kit (DPDK) is a user-space
networking technology originally developed by Intel and now
maintained by the Linux foundation [22]. It relies on spe-
cialized NIC drivers that allow it to circumvent the regular
Linux networking stack and still take advantage of hardware
capabilities like offloading. As such, DPDK applications usu-
ally have exclusive access to the network interface (although
mechanisms for sharing exist) and the NIC is practically
invisible to Linux and any other networked application. A
DPDK driver is referred to as a Poll-Mode Driver (PMD),
as it largely avoids expensive interrupts in favor of polling

for incoming messages in a run-to-completion model. DPDK
is frequently deployed in high-performance packet processing
applications with processing requirements beyond 10 million
packets per second [23].

B. XDP

The eXpress Data Path (XDP) [10] is an in-kernel packet
processing mechanism that can also be used to implement
user-space networking. It allows programs to inject a Berkeley
Packet Filter (BPF) into the kernel that executes packet pro-
cessing logic like routing, rewriting or replying. BPFs can also
selectively redirect packets into user-space programs before
they enter the Linux network stack, which we use to deliver
DDS packets directly to our CycloneDDS-XDP extension.
With sufficient hardware and software support, BPFs can run
directly on the NIC using offloading, as BPFs are compiled
to specialized byte code using LLVM designed to be Just-
In-Time (JIT) translated for the NIC at runtime. Due to its
integration with the Linux kernel, XDP-enabled applications
can be deployed on virtually any modern Linux system.

C. Comparison

While both technologies shift kernel responsibilities to the
application developers in order to improve performance, their
underlying design philosophies make them distinct. Of these,
the following trade-offs are relevant for users developing and
deploying applications:

a) Portability: While DPDK requires special drivers that
need to be managed by the user, XDP has more widespread
support due to its integration in the Linux kernel. In fact, XDP
programs can run either on the NIC directly, in the NIC driver,
or in the Linux kernel as a fallback depending on the hardware
and software support available. Thus, XDP can live entirely
without hardware and driver support if necessary, albeit at the
cost of performance. An XDP enabled program can be shipped
like any other Linux application, and it can load the BPF
program into the kernel by itself given sufficient privileges.
Meanwhile, DPDK is a much more disruptive solution: while
the application itself can be delivered as usual, a working
DPDK setup requires the user or administrator to work through
an 11-chapter “Getting Started” guide [22] to set up libraries,
drivers, and kernel modules and to manually configure the
NICs by hand, which is a much more involved process.

b) Interoperability: The exclusive NIC access required
by DPDK is another potential issue for users looking to adopt
a user-space networking technology. While special bifurcation
drivers exist [22], allowing DPDK applications to share the
NIC with regular applications that require Linux network
functionality given that hardware support is available, the setup
is complex. Meanwhile, user and kernel space networking
coexistence is supported out of the box with XDP’s BPFs,
with a BPF only acting as intermediate logic between the
hardware and the kernel. We use this functionality to redirect
only packets that match the CycloneDDS XDP-L2 extension’s
ethertype, letting all other traffic take its regular path
through the kernel.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

39



User Application

DDS-C

DDS-i

DDS-rt

Linux Kernel

NIC Driver

C
yc

lo
ne

D
D

S

XDP-L2
Extension

DPDK-L2
Extension

DPDK NIC Driver

Fig. 2. The CycloneDDS system stack. We intercept messages at the
implementation layer (DDS-i) for both the XDP-L2 extension (center) and
the DPDK L2 extension (right). In the case of XDP, the extension forwards it
through an XSK socket to the kernel or NIC driver (depending on the hardware
and software support). On the other hand, the DPDK extension communicates
directly with the specialized DPDK driver.

c) Performance: While the above aspects generally
weigh in favor of XDP, DPDK’s strong point is performance.
Performance aspects were considered to be so important for
implementing DPDK, that the manual even includes infor-
mation about how many cache lines are loaded per packet
and which lines need to be cached for efficient access to
header fields. In fact, developers of XDP are using DPDK
as a performance benchmark [24] to optimize their imple-
mentations. Because of this, we expect DPDK to significantly
outperform XDP as a transport layer for DDS, at the cost of
the aforementioned drawbacks.

Due to the slightly different use-cases for these technolo-
gies, we decided to adopt both technologies for use in DDS.
This will allow us to compare their suitability against each
other and the regular Linux IP stack, while also allowing users
to choose the right technology based on their requirements.

IV. IMPLEMENTATION

For our study of user-space networking in DDS, we chose
CycloneDDS as our base implementation. Compared to some
traditional DDS systems, it is a comparatively modern im-
plementation of the DDS standard. Among the open source
systems, it offers several advantages when implementing new
transport technologies, the most important being that Cy-
cloneDDS is structured into layered components (Figure 2).
The uppermost layer (DDS-C) consists of user-facing APIs
specified by the DDS standard, as well as CycloneDDS
specific extensions. The DDS-C layer then interfaces with
the implementation layer (DDS-i), which includes most of the
business logic required to implement a DDS system. The final
layer is the runtime layer (DDS-rt), which handles platform
and environment specifics, such as the implementation differ-
ences between Linux and other operating systems as well as
different levels of hardware capability.

The layered system allows us to effectively intercept the
internal API calls made by CycloneDDS without too many
changes to the core CycloneDDS source code itself. Besides its
good performance in the previous studies [20], this was a key
reason why CycloneDDS is our first choice for implementing
user-space networking extensions. We choose to inject the
DPDK-L2 and XDP-L2 extension code near the lower end of

...

Size Data

Size Data

Size Data

DPDK Ethernet Data

DPDK Ethernet Data

DPDK Ethernet Data

CycloneDDS IOV Structure DPDK Packets

Fig. 3. The difference between the CycloneDDS/Linux IOV buffer format
(left) and the DPDK packet buffer format (right). CycloneDDS buffers cannot
be cleanly wrapped in DPDK packets, which is why the serialized data needs
to be copied when traversing the extension on the outbound path.

the DDS-i layer. Inserting the module at this position allows
us to take advantage of the following properties:

A. Automatic Entity Lifecycle Management

The CycloneDDS DDS-i layer implements the discovery
of remote participants (using the standardized DDS Simple
Participant Discovery Protocol, SPDP) and the discovery of
remote endpoints (SEDP, respectively) in the upper half of the
DDS-i layer. Because both our L2 extensions are implemented
in the lower half of the layer, we can take full advantage of
CycloneDDS’s integrated discovery, liveliness detection and
security mechanisms for the small cost of needing to support
the integrated addressing schemes (locators) and multicast
communication. Since the underlying Layer 2 technology
(Ethernet) supports both multicast and broadcast delivery,
implementing this boils down to effectively managing the
DPDK Poll-Mode Driver (PMD) or the XDP kernel data
structures and efficiently converting CycloneDDS messages to
Ethernet frames and back. The ability to use built-in discovery
and lifecycle management facilities thus allows us to support
all related Quality of Service (QoS) settings out of the box
and enables us to maximize standards compliance while min-
imizing additional user configuration and code maintenance.

B. Serialization and Buffer Management

Similarly, the DDS-i layer contains the necessary logic to
serialize and deserialize the samples that the user wants to
transfer in the upper half of the DDS-i layer. This allows the
L2 extensions to benefit from the built-in standard serialization
mechanism, which future proofs the extension by allowing it to
leverage vendor encoding interoperability, future CycloneDDS
support updated wire formats, and DDS extensible data types.
It also relieves the extensions of taking care of data alignment,
endianness, and other typical networking burdens. However,
intercepting CycloneDDS communications below the message
serialization sublayer also comes with a downside: it is not
possible to control the buffers that CycloneDDS serializes its
data to. This is problematic because CycloneDDS serializes
its messages into several smaller buffers to pass them to the
kernel via the IOV Linux kernel data structures (used by the
syscalls readv and writev) to make passing the data to the
kernel efficient (Figure 3, left). The IOV data structure consists
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of an array of pointers to buffers that each have a size and a
variable-length sequence of data octets. Usually, the outgoing
packet will therefore not lie contiguously in memory.

Meanwhile, the packet buffer structure that DPDK expects
is also rigid (Figure 3, right), with each buffer containing
DPDK managed metadata, followed by an Ethernet header
managed by the DPDK-L2 extension and a fixed number of
data octets for payload. To avoid needing to allocate the DPDK
buffers when packets are sent and received, they are stored in
a memory pool by our extension. However, since both the
CycloneDDS and the DPDK buffer formats are ultimately
outside the extension’s control, creating a copy of the data
is unavoidable. When constructing DPDK frames to back
the serialized CycloneDDS data stream, two possibilities can
occur for each data fragment in the IOV structure:

1) If the data in the IOV fragment fits into the current DPDK
frame, it simply needs to be copied from the IOV buffer
into the DPDK frame’s data buffer and then the frame is
immediately transmitted through the DPDK driver.

2) If the data in the IOV buffer does not fit into the DPDK
frame, the rest of the available space in the DPDK frame
is filled with data from the IOV, the frame is queued
for transmission, and a new frame is retrieved from the
memory pool. This step is repeated until all data from
the IOV fragment is packed into DPDK frames.

After one IOV fragment is successfully packed into the
DPDK frame, we reiterate the algorithm above until all buffers
in the IOV data structure have been processed. This replicates
the fragmentation of the data stream into packets normally
implemented in the kernel and NIC driver, which needs to be
reversed for reconstruction of the original data stream on the
receiving side by defragmentation and reordering. DPDK/XDP
shift both these responsibilities from the kernel to the user.

A similar problem exists for XDP, where the extension also
needs to manually assemble Ethernet frames in user-space.
The frames are passed between the user-space application
and the kernel or NIC driver via special blocks in user-space
memory called umems. This works by using four single-
producer single-consumer rings, two each for the TX path
and the RX path (Figure 4), which the umems traverse in
cyclic fashion. For each path, one side is responsible for filling
the buffers while the other side empties them. If hardware

support is available, then the NIC can send packets directly
to or from the umem buffer without needing to copy it first.
However, we cannot get CycloneDDS to read from/write
directly to the umem buffer, which is why at least one data
copy is still necessary. If CycloneDDS offers an API to control
serialization buffers in the future, zero-copy all the way from
the serialization to the NIC hardware would become viable in
both extensions, potentially enhancing performance further.

C. Independence from Kernel Data Structures

In contrast to the DDS-rt layer, which interacts very closely
with the kernel, the DDS-i layer is still largely independent
of the underlying kernel and physical environment and thus
more portable. The relative distance in the DDS-i layer from
the kernel makes circumventing the kernel for user-space
networking easier, since we do not need to replicate much
of the kernel’s functionality, which we want to avoid for
performance and code complexity reasons. It also allows us to
bypass both the DDS-rt layer and the kernel simultaneously
to interact directly with the NIC driver, further shortening
the critical path for increased latency performance, while
eliminating another potential source for unexpected latency.

However, the abstraction is not perfect and for efficiency
reasons there are exceptions where CycloneDDS hands kernel
data structures all the way through to the DDS-i layer. One
of these is the file descriptor (socket) used for network com-
munication. CycloneDDS typically uses many sockets simul-
taneously for communication, and the DDS-i layer manages
a collection of file descriptors to make this possible. Apart
from configuring settings on the sockets, the CycloneDDS
DDS-i layer repeatedly queries the DDS-rt layer for the next
file descriptor that has data available for reading, which is
implemented in the DDS-rt layer using the select system
call. While the need to provide sockets is not an issue for
the XDP-L2 extension, since the XSK API (XDP sockets)
provides us with a pseudo socket that can be used with the
aforementioned system calls, this does pose a problem to the
DPDK-L2 extension, as there are no valid socket handles it
could provide the DDS-i layer for managing.

There are two possible solutions to this problem: Either the
DDS extension creates proxy file descriptors in the kernel or
the need for having socket handles is removed altogether in fa-
vor of a different method of querying for available data. Since
going through the kernel using proxy file descriptors defeats
the purpose of using user-space networking technologies in the
first place, we utilize the second option and modify the DDS-i
layer to eliminate the need for file descriptors. Unfortunately,
this is not possible without modifying the CycloneDDS core
source code. However, it is possible to trick the DDS-i layer
into automatically skipping most socket operations if it is told
which transport to next read from ahead of time, before it
attempts to determine it by itself. We implement this with
a simple rule: when the DPDK/XDP extension is active, we
assume that the extension is always the transport that should
be read from. This simplification allows us to implement
the DPDK-L2 extension with only moderate modifications to
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TABLE I
IMPORTANT Application & QOS SETTINGS USED IN DDS-PERF [20]

Topics Sample Rate (1/s) Size Type Randomization
2 1000 or unlimited 32 Bytes Unkeyed Partial
Reliability History Durability Deadline Latency Budget
Reliable KEEP_ALL VOLATILE INFINITE 0

the CycloneDDS core, and without compromising the regular
functioning of CycloneDDS when the module is not loaded.

D. Implementation Results

The aforementioned advantages of this design allow us to
implement both of these extensions quite compactly. Because
some functionalities in the extensions like packet handling
are similar regardless of the actual user-space networking
technology used, we can modularize the extensions, saving
several hundred lines of code. This results in a total code
base of under 3000 lines of extension code, with the XDP
extension encompassing more code than the DPDK extension
due to the need to manage the kernel BPF module. We deem it
a particular success that the number of code changes inside the
CycloneDDS core are minimal, with under 50 modified lines
of code. The DPDK and XDP extensions can be compiled into
CycloneDDS and activated at runtime using the same Quality
of Service (QoS) settings file that also controls all other aspects
of a DDS system’s behavior, ensuring easy configurability us-
ing established DDS mechanisms. Finally, with the completed
extensions available in our deployed version of CycloneDDS,
we now quantify the performance benefits that can be achieved
by benchmarking the implementation.

V. BENCHMARKS

To assess the intended advantages of user-space networking
extensions for DDS against the traditional Linux networking
stack, we require a benchmarking approach that is platform
and DDS implementation agnostic. To achieve this, we lever-
age DDS-Perf [11] and adopt the same environment employed
by the authors in a prior real-time study [20]. This maintains
consistency in hardware and software configurations, ensuring
a fair and comparable evaluation with the original findings.

A. Software Setup

The DDS-Perf application is configured for two participants:
one generating samples via Topic 0 and the second relaying
them back to their origin in Topic 1. A 32-Byte sample is
generated every millisecond, which corresponds to a fixed
sample rate of 1000 samples/s each way and 64 KiB/s total
bandwidth usage due to bidirectionality. This remains comfort-
ably below peak performance for all vendors, even on lower-
end hardware [11], providing a safety margin akin to critical
systems. All samples are unkeyed (a DDS feature we do not
require for benchmarking), and partially randomized to make
compression more difficult, emulating real-life conditions.

For comparability, we need to ensure that DDS’ Quality of
Service (QoS) settings are identical across all implementations
(Table I). To mirror the requirements of critical systems,

Switches

PSUs IPCs

0 1

2 3

MICROCHIP Intel i5-6442EQ

Network-Wired en0 Network-Wired en1

SERVER SIMATIC IPC427E

0 1

2 3

MICROCHIP Intel i5-6442EQ

Network-Wired en1 Network-Wired en0

SERVER SIMATIC IPC427E

Isolated direct connection
GLOBE GLOBE

Regular CPU Isolated CPU

Fig. 5. The Siemens SIMATIC IPC427E systems for industrial IoT use (left
side), each with the IPC box running a real-time tuned variant of Debian, a
PSU, and the network. Schematic of the hardware setup (right side): Each
system has two four-core CPUs with two isolated cores each connected by
2× Gigabit Ethernet switches.

we ask DDS to ensure strict reliability (the combination of
RELIABLE reliability and KEEP_ALL history), as we want
to ensure every sample is delivered. A viable alternative
that is less demanding on the DDS implementation would
be BEST_EFFORT reliability or a lower history setting for
systems that can tolerate interim packet losses. There are
many more available QoS settings in DDS, with the OpenDDS
manual [25] listing over 100 of them. Generally, we choose
all unmentioned settings to be least constraining, allowing the
DDS vendor to choose the optimal setting freely. Auxiliary
data collection (such as the collection of system metrics)
occurs in a separate process to avoid interfering with DDS-Perf
or the underlying DDS library. Orchestration occurs outside
the test system by a dedicated manager node.

B. Hardware Setup

We evaluate performance on two dedicated Siemens
IPC units (Figure 5) running Debian 11.5. These systems
use a PREEMPT_RT kernel (Linux jupiter 5.18.0-
0.deb11.4-rt-amd64) for low latency scheduling. Each
unit has an Intel i5-6442EQ @ 1.90GHz CPU, with
two general purpose cores and two isolated cores (via the
isolcpus kernel option) useful for interference-free com-
putation. This prevents any tasks from being scheduled on
them unless the corresponding task affinity is set first, but
load balancing does work between the cores if the affinity
allows it. The systems do not use Non-Maskable Interrupts
(NMIs). Each system has 8GB of DDR4 RAM, with swap
turned off to prevent latency caused by page faults, and is
interconnected by one general purpose and one dedicated net-
work. The dedicated network is wired directly point-to-point,
with no intermittent switches to avoid additional packet delay
variation. All components are rack-mounted, using passive
cooling. With the system environment in place, we must now
reproduce the original study’s DDS configuration.

C. Setup Reproduction

In the original study [20], the authors iteratively refined their
system configuration to improve performance of the vendors
with DDS-Perf. To make our results comparable, we replicate
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Fig. 6. Latency analysis of the original four vendors and the two user-
space networking extensions, with a time-series (left) and vertical histograms
(right). The user-space networking extensions outperform the other systems
in all latency metrics, with the DPDK surpassing the XDP extension. Apart
from the latency reduction, the performance variability is also reduced.
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Fig. 7. Latency performance summary for maximum observed latency/latency
bound (left) and average latency performance (right). The CycloneDDS
extensions offer 95% improved latency bounds and at least 18%−31%
improved average latency over the traditional DDS systems.

the final configuration from Section VI.E, requiring us to
perform the same hardware and software tuning. Both the core
isolation and the network isolation were reproduced on the
hardware side and the relevant QoS and kernel adjustments
were made on the software side. We verified the equivalency
of our setup by comparing with the original performance data.
Each profile shown contains at least 1 million samples, and
while we show only one trial each experiment was validated
at least three times.

D. Results

Latencies and latency bounds are the primary concern
in critical real-time systems. These are optimal when the

workload’s characteristic overall system utilization is low,
which means sending small samples and limiting at a rate
of 1000 samples/s. From the results in Figures 6 and 7, we
observe a significant round-trip time improvement for both
user-space networking technologies. For CycloneDDS-DPDK,
we achieve a mean latency of 74 µs, equivalent to a reduction
of 31% on our test system when compared to the regular
implementation of CycloneDDS. As expected due to the larger
involvement of the kernel, the performance of XDP is slightly
worse than DPDK at 87 µs, but this still corresponds to a
latency reduction of 18% over the status quo. A typical round
trip for the worst performing system, OpenDDS, will now
take around 3x the time it takes to complete a CycloneDDS-
DPDK round trip even after tuning OpenDDS. The better
mean latency performance of our extensions allows us to
effectively deliver sub-0.1-millisecond round-trips, or sub-
0.05-millisecond derived one-way latency, exceeding what was
possible using conventional DDS systems.

Previously, we also highlighted the importance of mini-
mizing latency outliers. Our results indicate progress here as
well, with a maximum observed latency of 194 µs and 211 µs,
respectively. Where previously we observed rare but high mag-
nitude outliers of up to 35x the mean latency for CycloneDDS,
with CycloneDDS-DPDK this margin is reduced to only
2.6x. While this still exceeds the latency bound of DPDK’s
native tool l2reflect [20], it is nevertheless a sizable
95% improvement on the status quo. The corresponding worst
latency in 1 million packets observed (with 0.0001% chance
of occurring) is 184 µs for CycloneDDS-DPDK and 203 µs for
CycloneDDS-XDP, demonstrating considerable performance-
reliability improvements. This is also seen in a substantially
reduced packet delay variation (PDV), which is more than
halved to 50% and 57% lower PDV than regular CycloneDDS,
respectively. For the first time on this hardware/software
combination, we have thus achieved a round-trip time latency
bound well below 1 millisecond for around 3 million packets.

While we focus on latency for real-time behavior analysis,
other performance benefits of the CycloneDDS extensions
are also of interest. We determine performance under two
additional workload characteristics that exhaust the system
capacity, one optimal for sample rate and one for bandwidth.
If we remove the target throughput of 1000 samples/s, we
can determine the peak sample rate for our testbed (Fig-
ure 8), achieved through small samples at high frequency.
CycloneDDS-DPDK reaches a mean sample rate of more than
250 000 samples/s, constituting a 59% increase over regular
CycloneDDS with 167K samples/s, albeit with a somewhat
higher performance variability. Curiously, CycloneDDS-XDP
doesn’t reach the same level of performance as CycloneDDS-
DPDK or regular CycloneDDS, even though both extensions
rely on much of the same code. We infer that the process
of reading packets one-by-one hurts XDP performance to the
point where regular kernel packet-batching outperforms the
XDP peak packet processing rate, while reading individual
packets does not have such a big performance penalty for
DPDK.
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Fig. 8. Maximum sample rates achieved by the DDS implementations at
32 Bytes/sample. While CycloneDDS-DPDK is able to reach extremely high
sample rates, CycloneDDS-XDP cannot maintain the throughput that regular
CycloneDDS achieves. All three variants of CycloneDDS outperform the other
systems, with OpenDDS achieving the lowest peak sample rate overall.
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Fig. 9. Maximum achievable DDS bandwidth for the extensions at
1 KB/sample. Similarly to peak sample rate performance, CycloneDDS-
DPDK outperforms in terms of throughput, but regular CycloneDDS beats
CycloneDDS-XDP. All three CycloneDDS-based implementations show a
performance lead on the competing implementations.

A similar effect is also visible for the maximum achievable
bandwidth (Figure 9), achieved by transferring large samples
at high frequency. CycloneDDS already performs quite well
by default, with a 1360 Mbit/s bandwidth saturating most of
the available NIC bandwidth of 2000 Mbit/s (Gigabit Ethernet
is 1000 Mbit/s full duplex, so double the data rate is possible
for bidirectional communication). With the DPDK accelerated
extension, we can saturate the entire interface, averaging at
2000 Mbit/s. Again, CycloneDDS-XDP falls slightly short, but
the mean bandwidth of 1040 Mbit/s still exceeds the 1 Gbit
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Fig. 10. The relative performance gains for the CycloneDDS user-space
networking extensions (higher is better). CycloneDDS-DPDK outperforms
regular CycloneDDS in every performance metric significantly. CycloneDDS-
XDP also has significant improvements for both target metrics latency and
packet delay variation, however these benefits come at the cost of slightly
reduced maximum sample rate and bandwidth.

mark and outperforms the other DDS implementations.
In summary, CycloneDDS user-space networking extensions

can significantly enhance various key performance metrics
(Figure 10) compared to the regular CycloneDDS implemen-
tation. The largest improvement is evident in the drastically
reduced latency bound, which is one of the most important
performance metrics for industrial applications. Since Cy-
cloneDDS already offers very competitive performance out
of the box and after tuning, this also means that the exten-
sions outperform competing DDS implementations, resulting
in the best observed DDS performance on this system to
date. User-space networking technologies still have their usual
downsides due to their invasive nature, but the performance
benefits still makes their adoption attractive for specialized
deployments. XDP is promising as it integrates DPDK-like
latency performance advantages seamlessly without infrastruc-
ture disruption. For critical performance needs, we recommend
the DPDK extension, which further enhances sample rate and
bandwidth, compensating for deployability drawbacks.

VI. DISCUSSION & FUTURE WORK

While embedded systems still have the edge when it comes
to real-time communications, the gap between hard and soft
real-time systems is closing. Our CycloneDDS extensions
contribute to DDS as a performance-oriented communication
middleware catching up, but there are other developments in
the DDS world working in the same direction.

IEEE 802.1 Time Sensitive Networking (TSN) is a family
of standards that brings real-time capabilities and determinism
to Ethernet networks. With compatible hardware (network
interfaces and switching equipment), it is possible to schedule
traffic and allocate network streams that can be used inter-
ference free, which will further reduce unpredictable latency
by providing network delay bounds at the hardware level.
While TSN capabilities are currently implemented within
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the Linux kernel, there is also the possibility of combining
TSN capabilities with user-space networking technologies to
get both deterministic packet handling and the performance
benefits from circumventing the kernel. At the time of writing,
discussions are ongoing about XDP’s suitability for TSN
delivery, but no proof of concept is yet available [26].

Another possibility for increasing efficiency is removing the
need for data copying on the transmission and reception paths,
which is especially cumbersome and thus latency inducing
for large message sizes. This is theoretically possible because
DDS controls the data structures that the application uses to
communicate, they are defined at compile time in Interface
Definition Language (IDL) structs. Thus, data could be laid
out with the necessary headroom for packet headers in DPDK
or umem buffers so that the packets may be filled by the appli-
cation, which just sees its regular IDL-defined data structure.
The headers would then be filled in-place and the packet could
be directly written to wire by the NIC. While this promises
performance advantages for simple data structures, a zero-
copy approach with no serialization quickly turns complicated
when less trivial structures with features like variable length
messages are involved. Our research suggests that the need
for dynamic memory allocation because of variable length
messages hurts the ability to offer reliable latency bounds for
some vendors. Additionally, laying out the data for complete
zero-copy support would require extensive modifications on
all levels of CycloneDDS code, an expensive endeavor that
will likely outweigh the benefits of fewer data movement.

Depending on the deployment, security considerations can
also be an important concern. With DDS user-space net-
working, there are two aspects to consider: Maintaining the
security of the data being transmitted and ensuring that the
additional privileges of the user-space networking technolo-
gies cannot compromise the operation of adjacent systems.
Since DDS has built in support for encryption that is also
supported by our CycloneDDS extensions, data security is
supported out of the box through the DDS-security module.
This makes the extensions just as secure as CycloneDDS itself
in this regard. As an additional measure, industrial systems
will often employ dedicated networks where physical access
can be controlled. The matter of privileges is more difficult
to secure though, as the user-space networking technology
essentially has promiscuous access to the network card and is
therefore able to read all traffic, even traffic that is unrelated
to the application. Ensuring that the packet processing in the
extensions cannot be hijacked, e.g. through a bug in the user
application, would therefore be desirable in the future. For
XDP, this would be possible by verifying the integrity of the
packet filter when loading it into the kernel. These security
lock-down mechanisms are subject to future research.

Finally, we observe that CycloneDDS-XDP has some per-
formance penalties that occur due to the reading of single
packets from the NIC, a problem likely also present in
CycloneDDS-DPDK, but which appears to be negligible there.
Reading packets one-by-one offers the best latency perfor-
mance, which is the main metric we are interested in. However,

the more congestion starts occurring when the throughput is
increased, the more the overhead of one-by-one processing
starts becoming visible. The DDS-i layer is only capable of
fetching a single packet from the extensions at a time, but
theoretically the extension could fetch multiple packets from
the NIC and buffer extraneous packets for later processing
in CycloneDDS, thus reducing the communication with the
NIC. Such a buffering mechanism would likely introduce some
additional latency at low load due to larger transfer requests
from the NIC as well as additional memory management, but
especially for XDP a performance benefit for sample rate and
bandwidth could likely be realized.

VII. CONCLUSION

In this paper, we introduced user-space networking tech-
nologies for use with the DDS message-oriented middle-
ware standard. Analyzing previous studies, it was found that
DPDK’s user-space networking technology outperforms four
DDS implementations using the traditional Linux networking
stack in latency bounds, showing a potential for DDS perfor-
mance benefits by leveraging a user-space networking stack.
We implemented two extensions for the high performance
DDS implementation CycloneDDS based on the popular user-
space networking technologies DPDK and XDP. These exten-
sions handle all Layer 2 Ethernet packet management within
the CycloneDDS library and communicate directly with the
NIC, circumventing the kernel on the communication hot-path.
Using the CycloneDDS-DPDK and CycloneDDS-XDP exten-
sions as accelerators, we demonstrated that both a significant
reduction in mean latency is achievable (DPDK: 31%, XDP:
18%), that the packet delay variation can be more than halved
and the maximum latency bounds can be reduced drastically
for both extensions to under 250 µs (∼95% improvement). Fi-
nally, in the case of DPDK the peak sample rate and bandwidth
can be further increased by 59% and 48%, respectively. Using
these CycloneDDS extensions, it is now possible to provide
soft latency bounds of well under one millisecond on the DDS
platform, which was not previously achievable on an industrial
edge system. With the continuing effort to bring DDS to more
timing-critical applications, we think that DDS with user-space
networking technologies strikes a good balance between the
offered performance and the necessary specialization on the
spectrum of out-of-the-box messaging middleware over Linux
IP to the use of dedicated microcontroller communication. We
hope that the community benefits from our contributions to
CycloneDDS and invite users to try out the CycloneDDS-
DPDK and CycloneDDS-XDP extensions on their systems.
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