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Abstract—Precise disaster prediction plays a critical role
in saving lives. Traditional landslide prediction methods have
predominantly relied on deep neural networks such as CNNs
and LSTMs. However, these methods face two main challenges.
The first is the class imbalance issue, as landslides are rare,
disrupting the training process. The second challenge stems
from decentralized data management, with variations in volume
and characteristics across regions. Typically, local municipalities
manage disaster data within their regions, and sharing or
migrating this data is not straightforward. This paper presents
SlideSafe: a novel landslide prediction system that combines
spatio-temporal contrastive learning and collaborative learning'.
It begins by training a contrastive learning model to extract
meaningful representations of land characteristics in each region.
Subsequently, these trained models are merged among regions
with similar characteristics, leveraging federated learning. The
federated models are then fine-tuned and customized for the
landslide event prediction using the data specific to each region.
Experimental results indicate that the proposed system achieves
higher precision under 100% recall compared to state-of-the-art
federated learning methods, which are often adversely affected
by non-iid data and data scarcity.

Index Terms—Decentralized Landslide Prediction, Class im-
balance, Contrastive Learning, Selective Federated Learning

I. INTRODUCTION

Accurate disaster prediction is essential for safeguarding
lives through disseminating warnings, providing vital time for
evacuation, and directing people to secure locations. Global
climate change has heightened the need for improving global
disaster management systems. Specifically, rainfall-induced
landslides are particularly vulnerable to climate change, po-
tentially occurring in historically safe areas. Unlike other
disasters, predicting landslides is challenging due to complex
factors like geological conditions, terrain, rainfall patterns, and
soil composition, requiring urgent attention [1].

Traditionally, meteorological agencies worldwide have re-
lied on statistical data processing from numerical weather
models and observation systems for landslide prediction [2].
These traditional approaches frequently encounter challenges
due to their incapacity to adequately account for the intricate
spatial interdependencies and the evolving dynamics of water
accumulation—both of which play crucial roles in landslide
occurrences. In light of these constraints, existing methods

'Our implementation is available here (https:/github.com/mclab-osaka/
slidesafe)
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have turned to harnessing the power of deep neural networks,
including Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks [3], [4].

Predicting landslides practically presents a substantial chal-
lenge due to the scarcity of labeled data and class imbalance
in datasets. Landslide events are rare, leading to an unequal
distribution of positive and negative cases. For instance, in a
dataset of weather-related incidents, there might be thousands
of records of non-landslide events but only a handful of
landslide occurrences. This class imbalance greatly hinders
the training of machine/deep learning models, often resulting
in a biased model that does not consider the minority class,
which in this case, represents landslides. Due to the problems
of class imbalance and the scarcity of labeled data, current
methods do not attain nearly 100% recall while maintaining
a reasonably low false positive rate, a critical requirement for
enabling residents to respond effectively to disasters [5].

Another challenge arises due to the decentralized nature of
data management and data disparities among different regions.
Federated learning has emerged as a promising solution for
model training over distributed data. This can be attributed
to the fact that landslides and other disasters are typically
monitored and managed by local municipalities, which means
that the relevant disaster data is stored with these municipal
authorities. To be more specific, local municipalities require
region-specific data and have established their own monitoring
facilities. However, the data collection processes employed by
local municipalities may not be consistent, resulting in varia-
tions in data quality and quantity. Besides, terrain characteris-
tics and weather conditions vary significantly from one region
to another. These heterogeneities lead to a non-independent
and non-identically distributed (non-IID) data problem, which
has been demonstrated to impact the efficiency of the training
process of federated learning in a recent study [6], [7].

To address these challenges, we propose SlideSafe: a novel
decentralized landslide prediction system. SlideSafe involves
the use of contrastive learning within each municipality to
capture spatio-temporal dependencies and patterns from imbal-
anced and distributed data. Contrastive learning has garnered
significant attention in recent years for its ability to effectively
learn high-quality representations from complex input data,
irrespective of label information. Subsequently, we quantify
the similarity between each pair of municipalities based on
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their encoded features. This similarity measurement guides a
decentralized collaborative learning process where municipal-
ities with similar features collaborate to construct a shared
model (an encoder) to enhance the learning process. Finally,
we fine-tune the shared model to adapt it to each municipality
for accurate landslide prediction.

The proposed system underwent a thorough evaluation using
real-world data from government agencies in Japan. The
data was collected over two years to assess the system’s
effectiveness in precision under 100% recall. The obtained
results validate the system’s capability to achieve a remarkable
landslide prediction performance of 62.4%. This represents a
substantial improvement over the state-of-the-art techniques,
surpassing them by up to 40.4%. These results demonstrate the
feasibility of predictive accuracy in real-world applications.

II. RELATED WORK
A. Landslide prediction

Traditional landslide prediction approaches are algorithm-
based methods [2], [8]. For instance, the author of [2] proposed
a statistical method based on rail fall amount to issue early
warning of landslides and evaluate their method using a dataset
of India as a case study. However, since these works don’t
consider the spatio-temporal dependency of landslides, like
soil distribution, elevation, and rainfall-related water accumu-
lation, these methods have significant limitations in accuracy
and generality regarding regions.

To capture spatio-temporal dependency of landslides, ma-
chine learning methods are also proposed [3], [4]. To predict
landslides accurately by capturing spatial dependency, the
author of [3] tries to predict landslide events with CNN. The
literature [4] tries to predict the displacement of the ground
that is a sign of landslide by utilizing LSTM.

Although these existing approaches are promising in terms
of accuracy, to operate a landslide prediction system officially,
it is more important to keep the 100% recall to avoid a situ-
ation where residents can’t evacuate. simultaneously disaster
prediction systems need to keep high precision because people
do not trust low-precision information. Since landslides are
unusual and rare events, it is challenging to achieve high
precision while keeping 100% recall in landslide prediction
due to class imbalance. However, these existing researches
don’t consider this class imbalance problem and the specific
requirements of disaster systems. Unlike existing research,
SlideSafe tackles the class imbalance problem in landslide
prediction and the particular requirements of disaster systems.

B. Machine Learning from Imbalanced Data

The class imbalance problem is one of the fundamental
problems of machine learning [9]. For instance, in binary
classification, the presence of majority and minority classes is
assumed, with a specific imbalance ratio. Since the standard
classifier is optimized by a loss function that treats both classes
equally, the minority class is almost ignored. However, the
minority class is more important to detect in usual cases that

include our target research area. To overcome this class imbal-
ance problem, many researches have addressed this problem
[10]-[12]. Approaches to solving class imbalance problems
are mainly categorized into two: Data-level approach and
algorithm-level approach.

The data-level approach aims to obtain balanced training
datasets from imbalanced dataset utilizing undersampling or
oversampling [13]-[15]. Since undersampling methods risk
removing data important for a model to learn the boundary,
oversampling gains more attention than undersampling [14],
[16]. To generate similar additional data even for multi-
modal data, some data augmentation methods using genera-
tive models are proposed [16] because it is difficult for the
traditional statical approach such as SMOTE [14] to generate
additional high-quality multi-modal data. The algorithm-level
approach works directly during the training procedure of the
classifier, disliking the previous data-level approach. The most
commonly addressed issue with the algorithm-level approach
is loss function adaptation, such as Focal loss [17], cost
sensitive learning [18] and Mean False Error [19]. Mean False
Error [19] balances the weight of loss from minority and
majority classes. Focal loss [17] reduces the impact of easy
instances on the loss function.

While the data-level approach holds promise, the cost of
data augmentation can be substantial, especially in scenarios
with high-class imbalance ratios or multi-modal input data.
Conversely, relying solely on loss function adaptation often
proves ineffective when the classifier is a deep, complex
neural network because the amount of minority data is in-
sufficient for obtaining high-quality latent representation. 7o
obtain meaningful latent representation, SlideSafe employs
contrastive learning as self-supervised representation learning
that is robust to label imbalance [20].

C. Federated learning

Federated learning (FL) is widely used when it is difficult
to collect distributed data on a server due to privacy, security,
or data migration costs because FL enables distributed clients
to train a shared model collaboratively without exchanging
local data [21]. However, it is known that traditional FL can’t
train efficiency when global data distribution and local data
distribution differ, which is called non-IID [22]. To build an
effective model for global distribution in non-IID settings,
many existing works address FL in non-IID settings [7],
[22]-[24]. FedProx [22] is designed to avoid the local model
deviating greatly from the global model.

Although these works succeed in converging learning and
improving the global model under non-IID data, the author of
[25]-[27] proposed personalization in FL because one global
model cannot fit all clients. One example is FedProx-FT [25],
which refines the global model from FedProx [22] using local
data to create personalized models. One of the similarity-based
approaches is FedAMP [26], which keeps the personalized
cloud model for each client trying to learn in each party
without sharing each client’s data. MOON [7] and FedMoCo
[24] use federated learning only between similar nodes whose
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representations are similar. This approach usually does not lead
to model convergence and thus affects the system performance.
Additionally, none of the above-mentioned techniques has
been applied to the field of disaster. In contrast, SlideSafe
adopts a decentralized collaborative learning mechanism and
neighbor-finding way based on weight similarity that ensures
model convergence and thus saves in communication costs as
demonstrated in [28].

III. PROBLEM STATEMENT

There are various types of land-related disasters, including
landslides, mudslides, slope failures, surface/deep collapses,
and debris flows resulting from heavy rainfall. In this paper,
our primary focus is on landslides triggered by rainfall. Each
local municipality, responsible for monitoring and admin-
istering landslide events, weather conditions, topographical
features, and vegetation within its respective geographical area,
shall henceforth be referred to as a “client”. We define Xé,b
and ny , as the features and the label of client 4 during specific
time period [T}, Tp], respectively. The notations X* and y* do
not specify time periods, and X and ! are the values in the
specific moment .

SlideSafe aims to predict landslide occurrence in the next
time slot 73, where T} is the current time. It takes into
account two key input factors: time-series rainfall data and
stable land characteristics that remain constant throughout the
time period. The land characteristics encompass a range of
features, including soil properties (categorized into 10 distinct
classes), vegetation types (categorized into 11 classes), and
elevation slope data(represented as real numbers with eight
categorized directions). These land characteristics serve as
an essential input for the system. Additionally, the system
utilizes time series rainfall data, which consists of non-negative
real numbers. This rainfall data is collected from government
public agencies, ensuring the reliability and accuracy of the
input information. As reported in a recent study [29], the latest
numerical weather forecast is so accurate within a day that it
can be considered actual value. Therefore, we can use the fore-
casted future rainfall amount data X} e A <u <A1
as well as the past observation X} _ hit (0 < h <t—1)asinput
for the prediction model. Our prediction task, aimed at client
i for predicting the binary label 3° at time T}, 1, is formalized
by Eq. (1). In Eq.(1), 9., € {0,1} represents the predicted
binary outcome, indicating whether a landslide will occur at
Ti+1. To achieve accurate landslide predictions for all clients’
regions, SlideSafe minimizes the sum of all clients’ loss ¢,
which is calculated using each client’s model weight w;, as
expressed in Eq. (2).

Ot = F(X{pt1u) (1)
> Eeup[t(wi; X)) 2)
i€[1,N]

In this equation, z = (X'y’) represents data following a
probabilistic joint distribution D;. Due to significant variations

in landslide occurrences and related features across regions,
the data distribution D; is heterogeneous and non-IID (non-
independent and identically distributed).

This approach is driven by several key advantages of de-
centralized collaborative learning, including ensuring regional
information security and facilitating comprehensive knowledge
sharing across different regions. This knowledge-sharing as-
pect enables the system to adapt to any regional changes
influenced by climate change or other factors. By adopting
decentralized collaborative learning, SlideSafe leverages these
advantages to create accurate, robust, and adaptable prediction
models for diverse geographical areas. Furthermore, it is worth
noting that D, exhibits class imbalanced data distribution,
which poses challenges for traditional machine learning and
federated learning approaches in obtaining general knowledge
or personalized models, especially within a decentralized
collaborative learning framework. For instance, clients with
no prior experience in landslides may participate in federated
learning, potentially negatively impacting the learning process.
Despite the distinctiveness of each client’s distribution D,
SlideSafe employs decentralized personalized collaborative
learning. In the proposed approach, the prediction model
leverages knowledge from other clients to acquire compre-
hensive insights about landslides, enabling generalization to
potential future changes in the region while also ensuring spe-
cialization for the target client and its associated distribution.

IV. SlideSafe— LANDSLIDE PREDICTOR FOR DISTRIBUTED
DATA

The objective of SlideSafe is to predict landslides using the
model of each client in their respective regions. To preprocess
raw data (such as the rainfall, soil information, and landslide
occurrence points) into a manageable and interpretable format
for machine learning models, the virtual gridding module
converts all data into square grid cell formats. The formatted
data is then input into the feature extractor module of
each client to extract meaningful latent features from complex
spatio-temporal input within their respective regions. This
extraction is achieved using contrastive learning techniques, as
described in [20], where training is conducted self-supervised.
Contrastive learning is designed to reduce the distance between
the representations of different augmented data of the same
input (i.e., positive pairs), and increase the distance between
the representations of augmented views of different input (i.e.,
negative pairs). Therefore, contrastive learning contributes to
distinguishable latent representation even in a self-supervised
manner. Then, clients communicate with each other to ef-
ficiently share their knowledge, which includes the weights
of the contrastive learning models, through a decentralized
collaborative learning mechanism. Within this mechanism,
clients can identify and collaborate with other clients that
have similar data distributions, enabling efficient collabora-
tive learning. This mechanism identifies similar clients by
measuring the similarity of the local model’s update because
the similar direction of model update helps convergence of
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Fig. 1. SlideSafe overview in heterogenous environments

aggregated model and reflects similar data distribution as
written in [28]. Finally, each client fine-tunes a shallow neural
network, the client-tailored classifier, to predict landslides
within their respective regions. This fine-tuning process uti-
lizes the feature extractor trained in the previous module. We
note that the virtual gridding module, feature extractor module,
and client-tailored classifier are client-dependent functions that
run on each client, while the decentralized, federated learning
mechanism is run on a single global server. The architecture
will be explained later in this section.

Since our focus is on a non-IID and class-imbalanced
disaster dataset, SlideSafe needs to obtain comprehensive
knowledge about landslides while personalizing the prediction
model to predict landslides accurately in the target region.
SlideSafe utilizes contrastive learning in the feature extraction
phase to derive general knowledge about landslides, as it
does not rely on label information. This enables us to obtain
meaningful representation without feeding each component’s
class imbalance ratio, which sets it apart from existing methods
for class-imbalanced federated learning [30]. Furthermore,
SlideSafe can enhance the efficiency of the learning process for
each client and personalize each model based on the similarity
assessment of clients and corresponding grouping.

A. Virtual Gridding Module

To make natural phenomena that are continuously iterable
by the machine learning model, this module is responsible for
transforming real-world data into a square grid format for data
discretization. SlideSafe’s default cell edge length is 1km, and
all data is represented in this square-grid cell format.

B. Feature Extractor Module

1) Multi-View Encoder: Rainfall-induced landslide depends
on rainfall and the land characteristics (i.e., soil, plant, slope,
and elevation). To capture the effects of these factors, we
employ a multi-view encoder that receives the time series data
(i.e., rainfall) and the land characteristics. Since underground
water flow plays a significant role in landslides, it is essential
to consider the target area and its nearby surroundings to

Time-series Rainfall Data Soil, Plant, and Slope & Elevation

Positional
Encoding

Maxpooling

Flatten

oy

\ij Mapping into

the latent space hy

Fig. 2. Multi-input Feature Encoder. We employ eight transformer layers and
three CNN layers.

accurately predict landslides. As shown in Figure 2, we extract
the feature from a sequence of gridding data using ConvTrans-
former [31] and extract the feature from land characteristics
data using CNN.

2) Feature Extractor with Contrastive Learning: This part
obtains meaningful representation from the spatio-temporal
inputs in grid-structured data. To avoid the effects of class im-
balance and get feasible representation from complex spatio-
temporal features, we incorporate a contrastive learning mech-
anism. Inspired by recent contrastive learning such as SimCLR
[20] in the computer vision research domain, our feature
extractor learns representations by maximizing agreement be-
tween differently augmented views of the same data example
via a contrastive loss in the latent space. This framework
comprises the following four major components. Stochastic
data augmentation: From each data sample, it randomly
generates two correlated views of the sample, denoted as z,,
and Zg. They are considered a positive pair. In SlideSafe,
we sequentially apply two simple augmentations: random
cropping followed by resizing back to the original size, and
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TABLE I
EXPERIMENTAL SETTINGS

Explored range

Parameter (Bold: default value)
Cell edge length [km] {1, 2}

Time interval [hour] {6, 12}

Batch size {8, 16, 32, 64, 128}
Temperature T {0.3, 0.5, 0.8}

Initial communication round Tjy4¢ | {10, 20, 50, 100}
Communication round 7' {10, 20, 30}

Local epoch E {10, 30, 50}

Similarity threshold m
Parameter of similarity metrics
Model size of SlideSafe

{0.1,0, 0.1, 0.3, 0.6, 1.0}
{02, 0.4, 0.6, 0.8}
{0.76 Million}

random rotation to obtain %, and Zg. Encoder f(-): It extracts
representation vectors from the data augmented in the previous
component. We employ an encoder that consists of two types
of view to obtain h, = f(&,) where h, € R? is a d-
dimensional output of the multi-view encoder. Small neural
network projection head ¢(-): It maps representations to the
space where contrastive loss is applied. We use a shallow
neural network with one hidden layer to obtain z, = g(hq).
Contrastive loss prediction: A contrastive loss function is
defined for this contrastive prediction task, given a set {Zy}
including a positive pair Z, and Zg of samples.

We randomly pick up B examples for a minibatch and
generate 2B augmented data using stochastic data augmen-
tation. Then, we defined the contrastive prediction task on
the augmented data, where for each positive pair, we ap-
plied contrastive learning regarding the rest of the 2(B — 1)
augmented examples as negative examples. Let sim(u,v) =
u'v/||ul|-]|v|| denote the dot product between two normalized
u and v (i.e. cosine similarity). Then the loss function for a
positive pair of examples (Z,,Zg) is defined as:

exp(sim(zq, 23)/7)
Zk€23_indew_set b[k;ﬁa] eXp(Sim(zk? 25)/7)(3)
where the value of bjo € {0,1} is 1 if and only if k¥ # a,
and 7 denotes a temperature parameter. The final loss is
computed across all positive pairs, both (Z,, Zg) and (g, %)
in a mini-batch. This loss has been used in [20] and called NT-
Xent loss (the normalized temperature-scaled cross-entropy
loss).

lopg=—log

C. Decentralized Collaborate Learning Mechanism

This section presents a decentralized collaborative learning
approach that ensures performance for each client. In general,
model performance can be affected when aggregating models
trained on dissimilar data distributions. To achieve high model
performance even in non-IID settings, SlideSafe incorporates
a similar neighbor selection mechanism [28]. This mechanism
aims to identify clients whose data distribution is similar
to each other, enhancing the performance of each model. It
is called the personalized knowledge-sharing mechanism in
SlideSafe, consisting of two stages: similar client selection and
distributed model update.

1) Similar Client Selection: In this stage, the global server
of SlideSafe aims to identify similar client for each local
client (i.e. municipalities). Each local client is denoted as
1 and possesses a model with model parameters w;. These
parameters are updated over E local epochs and subsequently
uploaded to a global server for a total of Tj,;; rounds. This
procedure mirrors the commonly used approach in centralized
federated learning.

We measure the similarity of clients using the Personal-
ized Adaptive Neighbor Matching (PANMGrad) [28] method,
which does not require setting the number of clusters. The
global server calculates the similarity of models of two clients
i and j using a combination of two parameters. The first
parameter is given in the first term of Eq. (4), where v € [0, 1]
is a hyperparameter, and g! is the vectorized gradient of client
¢ in round ¢ and is expected to represent the data distribution
in client i. g¢ is obtained by g! = w! — w!™!, where t is
the current time round. We note that w! is initialized by
the same global model at the beginning of local training in
each round, and one-round update g} can be noisy. To capture
the historical optimization directions of each model, we also
introduce accumulated weight updates from the initial model,
ht = w! — w?, and use it in the second parameter given by
the second term of Eq. (4). hﬁ is the accumulated vectorized
gradient of client ¢ in round ¢. The global server calculates
the similarity of models of two clients using similarity metrics
given in Eq. (4).

< g9t >
= Tt Nt
il - [1g5]]

The global server selects the clients whose similarity is
higher than the threshold m as the “neighbor clients” using
average similarity during 73,,;;. The threshold m is the system
parameter.

2) Distributed Model Update: In this stage, each client
communicates with each of the similar clients found in the
previous stage. More concretely, the model parameters w; of
client ¢ are delivered to each client j which is a similar client
of 7. Client ¢ then waits for the models sent from up to Ngim,
clients and aggregates these received models. We use n to
represent the number of received models, and it is important
to note that n < Ngn,, taking into account cases where model
delivery may fail or not be performed due to some reasons.
Eq. (5) is the federated aggregation of the received models.

> GENC)

j€{similar clients of i}U{%}

< hi, hf >
[[RE]] - (1]

simm- —|— (1 — ’)/) . (4)

1
—t+1
R

The new aggregated model wf“ is then trained for F epochs
before it is ready to be gossiped again.

D. Client Tailored Classification

This module takes the output (i.e., latent features) of the
feature extractor module as input, and classifies the given
inputs into positive and negative cases, which is output in
confidence using the Sigmoid function. It is two layers shallow
neural network and trained by a cost-sensitive loss function
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Ly, q) = —rxylog(j)— (1 —y)log(1—7). The loss function
calculates the loss according to the ratio of the classes, where y
and y are the actual label and output of the model respectively,
and r is the ratio of the negative case and positive case.

Since landslide events are rare and geologically skewed,
some clients may have never encountered landslides. In such
situations, fine-tuning those clients may not work as they do
not hold positive case data. To enable prediction for such
clients (called unlabeled clients), SlideSafe provides the model
among pre-trained models to those clients. Each unlabeled
client, say u, can train its multi-view encoder and obtain
model parameters w, using z, ~ D, through contrastive
learning because contrastive learning does not rely on label
information. Since the multi-view encoder is trained to obtain
high-quality latent representation from rainfall and terrain data,
the multi-view encoder’s weight is expected to reflect rainfall
and terrain patterns in this region. Thus, SlideSafe can select
a similar client even for unlabeled clients. The global server
selects the most similar model by comparing w, with each
model and finds the most similar client. Finally, unlabeled
client u receives the model of the most similar client and
applies it to its data to predict landslide occurrence.

V. EVALUATION
A. Data Collection and Configuration

We have collected data related to landslide prediction for ten
prefectures in Japan. Landslides depend on various features,
and we have curated datasets with well-established and com-
monly used variables. Landslide Events: We collected records
of landslide events in Japan from 2021 to 2022, totaling 253
events. Each landslide event is documented with its corre-
sponding time and location, represented as six decimal points
for latitude and longitude coordinates. The time granularity in
our dataset is at the day level, and SlideSafe predicts landslide
occurrences at this level, which is sufficient for pre-evacuation
planning. Rainfall: As demonstrated in [4], time series data of
rainfall contribute to accurate landslide prediction because wa-
ter accumulation plays a crucial role in landslides. Our dataset
contains 2 years of data from January Ist, 2021 to December
31, 2022. Soil Property: Soil water content is a significant
factor contributing to landslides because underground water
flow depends on soil properties. The properties related to the
ease of sliding or water drainage have a significant impact on
landslide events. In our dataset, the soil is categorized into
10 classes, including artificial paved areas. Vegetation: The

Class imbalance ratio

Fig. 4. Impact of Class Imbalance Ratio

15 20 2 4 6 8 10
Number of clients

Fig. 5. Impact of Number of Clients

presence of vegetation in the surrounding area is a significant
factor contributing to landslides, as plant and tree roots help
stabilize underground water and soil. Our data sets include 11
types of vegetation. Elevation and Slope Angle: Elevation
and slope angle are crucial factors in landslide prediction
because they are closely linked to water accumulation and the
gravitational force acting on the land. Additionally, steeper
slopes are inherently more susceptible to landslides than gen-
tler ones. Elevation and slope are represented as real numbers
with eight categorized directions in our datasets.

We adhere to the Japan MESH3 Boundaries ECM (meshing
system in Japan) and collect the data for each mesh as a unit,
where the mesh length is one kilometer. To train and evaluate
our system, we have prepared negative cases, representing days
when no landslides occurred. For each client, we collected data
for the days when current warning information was issued
to ensure the quality of these negative cases. Additionally,
we randomly selected an equal number of data points for
each client to create negative cases. Furthermore, we show
the experimental configuration settings in Table L.

B. Evaluation Metrics

The primary objective of SlideSafe is to achieve accurate
landslide prediction. In disaster scenarios, achieving a recall
rate of 100% is crucial because this information serves as the
vital trigger for evacuations. However, it is also important to
maintain a low false positive rate, as an excessive number of
false alarms can erode trust in the information provided. To
evaluate the practical utility of disaster information, we employ
a performance metric known as precision under 100% recall.
This metric allows us to assess the model’s precision while
ensuring that recall remains at 100%. Given that SlideSafe
aims to predict landslides in distributed settings, all reported
performance metrics are averaged across clients for each
distribution, providing a comprehensive assessment of the
system’s effectiveness.

C. Decentralized Prediction Model Evaluation

In this section, to measure the performance of SlideSafe, we
compare the proposed system with the most relevant state-of-
the-art techniques: FedAvg [32], FedProx [22], and FedProx
with fine-tuning (FedProx-FT) [25]. FedAvg [32] is the most
classic federated learning method, which is the baseline of
the training results. FedProx [22] is a widely used method
to make the training process efficient in non-IID datasets.
FedProx uses a regulation parameter p to prevent the local
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Fig. 6. Precision under 100% recall and precision
and recall AUC (PR AUC)

model from deviating greatly from the global model. We fix
the regulation parameter p to 0.3. FedProx-FT [25] aims
to build personalized models in non-IID settings by fine-
tuning the global model trained in FedProx using local data.
Furthermore, we set current Japanese warning information
(Rule base) operated in the real world as a baseline.

1) Impact of Similarity Threshold: In SlideSafe, for each
client, similar clients are selected to share the trained models,
and this selection is controlled by m, the similarity threshold
parameter. A smaller value of m results in grouping dissimilar
clients and an increase in the impact of non-IID data distri-
bution. Meanwhile, with a large value of m, the precision
may also decrease because clients cannot collect models from
sufficient clients to obtain comprehensive knowledge about
landslides in decentralized collaborative learning. Therefore,
we study the effect of m and consider the appropriate value
through the experiment. Figure.3 shows the relationship be-
tween the threshold and the precision under 100% recall. We
can observe that SlideSafe performs best with m = 0.5.

2) Robustness: SlideSafe aims to predict landslides in the
real world. Such systems must be robust to tough situations
because the settings and data are not necessarily ideal. We
evaluate SlideSafe’s robustness from the number of clients.
Generally, federated learning performs better as the number
of clients increases. However, traditional federated learning
methods struggle with non-IID data. Figure.5 presents the
precision rates with different numbers of clients. Notably, we
observe that SlideSafe and FedProx-FT [25] exhibit increasing
performance trends as more clients are involved. It is worth
noting that SlideSafe achieves higher performance with just
three clients than FedProx-FT [25] does with ten clients.
This highlights the efficacy of SlideSafe, stemming from its
mechanism for grouping similar clients in federated learning.

The class imbalance ratio of our target dataset differs from
clients (regions). Therefore, we observe the impact of class
imbalance ratios on the precision. Figure 4 shows the results.
Although all the methods are affected by the increase of the
ratio, the decreasing trend of SlideSafe is much slower than
the other two comparisons and the precision rates are much
higher than those of the others. This indicates that SlideSafe
is robust to class imbalance.

3) Performance Comparison: Figure 6 displays the pre-
cision under 100% recall and PR AUC of each method. In
our experiments, we have ten local clients, and the values of

Fig. 7. Impact of client selection algorithm  Fig. 8. Prediction performance in unseen region

other relevant parameters can be found in Table 1. SlideSafe
takes 1.5 seconds to train the model for each epoch and
300ms to inference on average. Our machine environment is
the following: GPU is NVIDIA GeForce RTX 4090, CPU
is AMD Ryzen 9 7950X 16-Core Processor, and RAM is
64GB. Since SlideSafe works on local municipalities and
needs only 300ms in runtime, local municipalities can make
predictions in real time. It is worth noting that the centralized
model in the graph utilizes data from all clients, making its
performance a reference for an ideal and best-case scenario. In
our observations, SlideSafe achieves the highest performance
among the other state-of-the-art methods within decentral-
ized settings. This outcome highlights that SlideSafe excels
by personalizing models for target regions while acquiring
comprehensive knowledge through decentralized collaborative
learning with similar regions.

SlideSafe utilizes Personalized Adaptive Neighbor Matching
(PANMGrad) [28] to identify clients with similar data distri-
butions. To assess the impact of this approach, we compare
SlideSafe with two others: random gossip (Random) and
Performance-based node selection (PENS) [6]. In the random
method, clients communicate with each other randomly, poten-
tially leading to a mix of dissimilar data distributions. PENS is
a state-of-the-art method for finding clients with similar data
distributions. It selects similar clients by leveraging the loss
values of client j’s model validated on client i’s local datasets.
While PENS is a promising metric, it requires O(N?) commu-
nications to identify similar clients, where N is the number
of clients in the network. Figure 7 presents precision under
100% recall and PR AUC for each method. Notably, SlideSafe
outperforms other methods in terms of precision. This superior
performance is attributed to SlideSafe’s successful formation
of client groups with similar data distributions, enabling ef-
ficient knowledge sharing. It should also be highlighted that
SlideSafe requires fewer communications, specifically O(N)
communications.

Finally, to assess the performance of SlideSafe in regions
that have never experienced landslides, we examine its per-
formance in unseen regions by applying a trained model to
these unfamiliar areas. We select the model to use in these
unseen regions using the PANMGrad approach. In SlideSafe,
clients can identify similar clients without relying on labels,
allowing us to apply the model in the region most similar to the
target region. Figure 8 shows the model’s performance in un-
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familiar regions, which demonstrates SlideSafe predicts more
accurately in unfamiliar regions than the existing methods.

VI. CONCLUSION

This paper presents a novel landslide prediction system
combining spatio-temporal contrastive learning and selective
collaborative learning. It begins by training a contrastive
learning model to extract meaningful representations of land
characteristics in each region. Subsequently, these trained
models are merged among only regions with similar character-
istics, leveraging collaborative learning. The federated models
are then fine-tuned and customized for the landslide event
prediction using the data specific to each region. We experi-
mented with real-world datasets from ten Japanese prefectures.
The results of these experiments illustrate that our approach
achieves the highest precision when aiming for a 100% recall
rate in landslide prediction, surpassing the performance of
state-of-the-art methods. These findings underscore that our
system performs well in alerting to signs of landslides while
maintaining a low false-positive rate. In the future, we plan to
boost the prediction reliability with explainable Al techniques
(e.g., SHAP and LIME) and apply the framework to other

types of disasters, such as floods and earthquakes.
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