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Abstract—Sleep apnea is a serious sleep disorder where pa-
tients have multiple extended pauses in breath during sleep.
Although some portable or contactless sleep apnea detection
systems have been proposed, none of them can achieve fine-
grained sleep apnea detection without strict requirements on the
device or environmental settings. To address this problem, we
present DeepApnea, a deep learning based sleep apnea detection
system that leverages patients’ wrist movement data collected by
smartwatches to identify different types of sleep apnea events (i.e.,
central apneas, obstructive apneas, and hypopneas). Through a
clinical study, we identify some special characteristics associated
with different types of sleep apnea captured by smartwatch.
However, there are many technical challenges such as how to
extract informative apnea features from the noisy data and
how to leverage features extracted from the multi-axis sensing
data. To address these challenges, we first propose signal pre-
processing methods to filter the raw accelerometer (ACC) data,
smoothing away noise while preserving the respiratory signal
and potential features for identifying sleep apnea. Then, we
design a deep learning architecture to extract features from three
ACC axes collaboratively, where self attention and cross-axis
correlation techniques are leveraged to improve the classification
accuracy. We have implemented DeepApnea on smartwatches
and performed a clinical study. Evaluation results demonstrate
that DeepApnea can significantly outperform existing work on
identifying different types of sleep apnea.

Index Terms—Apnea Detection, Deep Learning, SmartWatch

I. INTRODUCTION

Sleep apnea is a serious sleep disorder where patients have
multiple extended pauses in breath during sleep. Sleep apnea is
linked to many diseases, such as high blood pressure, chronic
heart failure, depression, obesity, and daytime fatigue [1]. It
is estimated that more than 22 million Americans suffer from
sleep apnea [2]. Although the US government spends more
than 150 billion on sleep apnea [3] every year, about 75% of
people with moderate and severe apnea are still undiagnosed
[4].

To diagnose sleep apnea, the commonly used method is
the polysomnography (PSG) test, which requires the subjects
to wear more than 20 wired sensors, including the pulse
oximeter, pressure transducer, thermocouple, and electrodes
placed at different parts of the body. It is uncomfortable for
many patients and can even affect their sleep and the diagnosis
results [5]. Moreover, such in-lab PSG test is expensive,
cumbersome, and time-consuming, and thus many potential
patients cannot be timely diagnosed, endangering their health.

In order to overcome these shortcomings of the PSG test,
many contactless or wearable systems have been proposed for

sleep monitoring and apnea detection. For example, with the
wide deployment of wireless technology, many researchers [6]
[7] [8] [9] leverage sound waves, WiFi or radio frequency
signals to measure the chest movements during patients’ sleep.
The chest movement due to breathing can be identified by
analysing the properties of the wireless signal, i.e., the channel
state information or the shift in carrier frequency. Although
wireless technologies can extract breathing information for
monitoring sleep, they either require customized hardware,
have strict environmental restrictions, and hence cannot be
largely deployed or cannot detect abnormal breathing signals
(i.e., sleep apnea).

Compared to these systems based on wireless technology,
the wristband-based methods [10] [11] [12] and the geophone-
based method [13] [14] can measure the respiration signal
with widely adopted wearable devices such as smartwatches
or through multiple geophone sensors. However, they can
only provide some coarse-grained sleep data such as the
respiratory rate, and they are not capable of detecting sleep
apnea. ApneaDet [15] is the first smartwatch-based system
which exploits the built-in sensors in smartwatch to detect
sleep apnea. Specifically, it leverages the accelerometer (ACC)
to monitor the wrist movements, then extracts respiratory
information from the ACC data for apnea detection. How-
ever, it was designed for achieving binary classification, i.e.,
differentiating sleep apnea from normal sleep, which limits its
general application.

There are three different kinds of respiratory events as-
sociated with sleep apnea (i.e., central apneas, obstructive
apneas, hypopneas), and distinguishing these different kinds of
respiratory events is very important. This is because different
respiratory events have different etiology (e.g., central apneas
are caused by the brain stopping the breathing process, while
obstructive apneas are caused by local collapsibility of the
upper airway) and they have links to different diseases. Thus,
identifying all three types of sleep apnea can help clinicians
provide better diagnosis and treatment [5].

There are many technical challenges for identifying three
different types of sleep apnea. First, the wrist movement gener-
ated by breath or lung movement is very subtle. The raw ACC
data recorded by smartwatch contains a large amount of noise,
which makes it harder to extract the respiratory information.
Second, existing machine learning features used for binary
classification do not work well for multi-classification, i.e.,
identifying three types of sleep apnea. This is because it is
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relatively easier to differentiate normal sleep from abnormal
sleep apnea, but it is much harder to identify different kinds of
sleep apnea events. Third, based on the sleeping posture and
the wrist position, the three ACC axes may carry different
amount of respiratory information. How to leverage such
information to identify sleep apnea remains as a challenge.

In this paper, to address these challenges, we propose a
smartwatch-based system named DeepApnea, which can detect
different types of sleep apnea. We first propose signal prepro-
cessing methods to filter the raw ACC data, smoothing away
noise while preserving the respiratory signal and potential
features for identifying sleep apnea. Then, we design a deep
learning architecture to extract features from three ACC axes
collaboratively. Specifically, we apply self attention technique
to accentuate more significant features and apply cross-axis
correlation technique to exploit the correlations among dif-
ferent axes. The extracted deep features and the correlation
information are merged through aggregated classification to
further improve the classification accuracy.

The main contributions of the paper are as follows.
• To the best of our knowledge, this is the first work to

identify three types of sleep apnea (hypopneas, obstruc-
tive apneas, central apneas) only using wrist-worn ACC
data.

• We propose signal preprocessing techniques to extract
accurate representations of the respiratory signal from the
raw noisy ACC data.

• We design a deep learning model to automatically extract
informative apnea features from three ACC axes and
wisely fuse these features to improve performance.

• We have implemented DeepApnea on smartwatches and
performed clinical study. Evaluation results show that
DeepApnea significantly outperforms existing work on
identifying three types of sleep apnea.

II. BACKGROUND AND MOTIVATION

There are three types of respiratory events associated with
sleep apnea [16]. A Central Apnea occurs when the subject
holds his/her breath for a long period of time, typically
10 to 30 seconds. During central apnea, the human brain
fails to provide the signal to inhale, resulting the absence
of breathing effort. A hypopnea occurs when the subject’s
breathing becomes shallow. Specifically, patients will lose 30%
to 90% of normal airflow. This procedure usually lasts more
than ten seconds. An Obstructive Apnea occurs when there
is a complete or partial blockage of the upper airway during
sleep. The subject makes an effort to pull air into the lungs,
however, the air does not reach the lungs because of blockage.
Fig. 1 shows the airflow measured by the nasal pressure sensor
for different sleep apneas types.

Based on our previous clinical study [15], we demonstrated
the feasibility of apnea detection with a smartwatch. This
clinical study was conducted with twenty subjects at Penn
State Hershey Sleep Research & Treatment Center. Each
subject wears a smartwatch to collect the ACC data of the
wrist movement, during a regular PSG test.
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Fig. 2. The raw ACC data (x axis), which corresponds to the subfigures in
Fig. 1.

Fig. 2 shows the raw ACC data collected using smart-
watches. In general, respiration leads to the periodic subtle
movement of the chest, abdomen, arms and wrists and these
movements can be recorded by the ACC in smartwatch.
Fig. 2(a) shows the ACC data corresponding to Fig. 1(a).
Between the 12th and 36th seconds, labeled by the technician,
a hypopnea happens. During this time, the respiration becomes
shallow, so the amplitude change of airflow will decrease
and slimier change is reflected on the ACC data. Fig. 2(b)
(corresponding to Fig. 1(b)) presents the ACC data during
an obstructive apnea. In obstructive apnea, after a respiratory
blockage for several seconds, the subject is likely to make
one or several intense breaths before returning to normal
breathing, leading to the signal spike around the 42th seconds.
In Fig. 2(c), since the subject holds breath during central
apnea, the ACC data are flat and there is no intense spike
after this holding.
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Fig. 3. The infeasibility of using hand-crafted features to differentiate three
types of sleep apnea.

Based on this study, we can see that different sleep apnea
can lead to different pattern of ACC data. With machine learn-
ing techniques, sleep apnea can be identified. Unfortunately,
since the ACC data is very noisy and the wrist movement
is very subtle, it is hard to use simple machine learning tech-
niques to identify different types of sleep apnea (i.e., multiclass
classification) although it is possible to differentiate sleep
apnea events from normal sleep (i.e., binary classification)
which was the design goal of [15]. For example, the number of
respiration peaks and the maximum distance between two con-
secutive respiration peaks are commonly used as features [15]
[17] for sleep apnea detection. Fig. 3 visualizes different types
of apnea events using a two-dimensional scatter plot, where
the horizontal dimension represents one feature (the number
of peaks) and the vertical dimension represents another feature
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Fig. 4. The ACC data along three axes in an obstructive apnea.

(maximum distance of peaks). Although normal sleep events
can be easily distinguished from apnea events, different types
of apnea events are overlapped with each other and there is
no obvious decision boundary to distinguish them.

To address this problem, we propose deep learning tech-
niques to identify different types of sleep apnea. Although
deep learning has been proved to help extract more represen-
tative features than traditional machine learning methods in
many areas, simply applying widely used deep learning models
such as CNN and LSTM to our problem may not work. This
is because they only treat the triaxial data as one single input
feature without considering the heterogeneity among different
axes. In practice, based on the sleeping posture and the wrist
position, the collected ACC data along each axis may be
different. Instead of only using the data from one axis, this
multi-dimensional data can help us obtain more information.
However, if the ACC data is not processed properly, it may
have adverse effects. For example, Fig. 4 shows the raw data
recorded from one obstructive apnea event. X axis and Y axis
have a similar data pattern (e.g., they both contain a signal
spike near 29nd second) whereas Z axis does not have it.
Simply fusing the data from three axes through basic deep
learning operations (e.g., average pooling) may result in large
errors.

To deal with this problem, we consider the data reliability
from each axis. For example, we can assign a higher weight to
more informative axes X, Y and lower weight to less informa-
tive axis Z in Fig. 4. However, in practice, it is hard to man-
ually determine such weights due to the data heterogeneity.
Since the ACC data from three axes jointly represents the wrist
movement, there exist correlations between different axes’
ACC data (e.g., Y is like an inverse of X in Fig. 4 whereas Z is
less correlated with X and Y). Based on existing research [18],
the learning performance can be improved by leveraging the
correlations between different data sources or feature subsets.
Since data from each axis can be treated as a single data source
of the patient’s wrist movement, the detection accuracy can
be improved by exploiting the correlations among different
axes. Thus, we propose the Cross-axis correlation technique
(section V-C), to explore correlations between different axes
and automatically assign different weights to different axes.

Additionally, within a single data segment collected from
one axis, certain parts of the data may contain more valuable
information than others. For example, a signal spike part might
be more representative of recognizing obstructive apnea. Thus,
it is crucial to focus more on the informative parts. To achieve
this objective, we employ self-attention techniques (section
V-B), which assign higher weights to the informative parts,
thereby further enhancing the detection accuracy.

III. SYSTEM OVERVIEW

The overall design of DeepApnea is shown in Fig. 5. During
sleep, the smartwatch on the subject’s wrist records data
generated by the accelerator sensor. When the subject wakes
up, the smartwatch stops recording and the collected data can
be forwarded to the subject’s smartphone through Bluetooth
for further analysis. The raw acceleration data is preprocessed
by the signal prepossessing module, and then forwarded to a
deep learning module which extracts representative features
and classifies into four sleep events - normal sleep, hypopnea,
obstructive apnea, and central apnea.

Fig. 5. System architecture of DeepApnea.

• Signal preprocessing module: The raw ACC data col-
lected by the smartwatch contains a large amount of
electronic and mechanical noises, which make it harder
for the deep neural network to extract useful features from
the time-series data. To deal with these problems, we
have the following three steps for signal preprocessing:
1) signal resampling: Resample the raw data at a fixed
rate to mitigate fluctuations from the actual sampling
rate caused by system operations. 2) signal denoising:
Utilize a signal filter to remove unnecessary noise while
preserving the breathing signal. 3) signal normalization:
Normalize the data to mitigate high variations introduced
by varying sleep poses and wrist positions. The details of
these steps will be presented in Section IV.

• Deep learning module: In order to extract informative
features from the prepossessed data and effectively lever-
age signals from three axes, the deep learning module has
the following steps. First, the prepossessed data of each
axis is fed to its specific CNN-based feature extractor to
obtain the corresponding deep features. Second, Self at-
tention and Cross-axis correlation techniques are applied
to these deep features to obtain the weighted deep features
of each axis and the correlation information between
any two axes. Lastly, both the weighted deep features
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and correlation information are merged with Aggregated
classification to classify the sleep event, i.e., normal,
hypopnea, obstructive apnea, or central apnea. The details
of these steps will be presented in Section V.

IV. SIGNAL PREPROCESSING

A. Signal Resampling

To collect data with smartwatch, we first setup a sampling
rate higher than the respiration rate so that all useful signal can
be preserved. However, in most commercial systems, the real
sampling rate may fluctuate around the expected sampling rate
due to many uncontrollable system operations. For example,
we use a smartwatch (Huawei Watch 2) to collect the sleep
data. Although the sampling rate was set to SENSOR -DELAY-
GAME (i.e., 50Hz) through the Android API, the real sampling
rate varies from from 40 Hz to 60 Hz. This will create
problems for running the deep learning model which require
the input data to have fixed size. Therefore, we need to re-
sample the collected data with a certain sampling rate before
sending it to the deep learning model.

The Fourier method [19] is adopted to resample the raw
data, because it can avoid information distortion (e.g., alias-
ing) during resampling and well preserve the information of
the original signal. Fourier method first leverages Discrete-
time Fourier Transform (DTFT) to transform the accelermoter
signal into frequency domain. Then, during Inverse Discrete
Fourier Transform (IDFT), we can eliminate aliasing by lim-
iting the highest frequency to half of the sampling rate and
obtain resampled data points with the same time interval. The
procedure is expressed in the following equations: X̂[k] =∑N−1

n=0 e−j 2π
N nkx[n] and ẋ[m] = 1

M

∑M/2−1
k=0 ej

2π
M mkX̂[k].

The first equation represents DTFT, where j is the imag-
inary unit, N is the number of data points of the raw
signal and x[n] denotes the nth raw data points. Through
it, we can get different frequency components X̂[k], where
k = 0, 1, 2, ..., N − 1. The second equation represents IDFT,
where M is the number of data points after resampling and
x[m] denotes the mth data point of the resampled signal.
When calculating ẋ[m], we only consider 0th to (M/2− 1)th

frequency components to avoid aliasing. Finally, we can obtain
the rasampled signal ẋ[m] from the raw signal x[n].

B. Signal Denoising

The raw signal collected by the smartwatch contains a large
amount of electronic and mechanical noise, which makes it
harder for the deep neural network to extract useful features
from the time-series data. Therefore, we need to design an
effective filter to filter out the noise.

The moving average filter [20] is a widely-used filter for
denoising. Since this method simply averages different sub-
sequences of the signal, it also eliminates potential useful
information for apnea classification. For example, Fig. 6(a)
shows the raw ACC signal representing an obstructive apnea
event. There is a signal spike when the subject tries to make
an intense breath after an obstructive apnea event, and such
a signal spike can serve as the feature for distinguishing
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Fig. 6. The raw and filtered ACC data with different denoising methods.

obstructive apnea from other apnea classes. However, as shown
in Fig. 6(b), the moving average filter smooths away the signal
spike.

To preserve all useful signal information, e.g., the signal
spike, most existing research [15] relies on the Total Variation
filter (TV filter) [21] for signal denoising. Although, TV filter
can preserve the respiratory spikes well, it cannot remove the
low-amplitude noise as shown in Fig. 6(c). This is because TV
filter only aims to minimize the sum of the variation between
two adjacent signal values over the whole signal sequence
without considering that the denoised signal should be locally
smooth. As a result, TV filter eliminates the high-amplitude
noise, but low-amplitude noise still remains (e.g., the 20th to
25th, and the 48th to 50th seconds in Fig. 6(c)).

To keep the periodic respiratory information and remove all
unnecessary noise, we design an adaptive denoising algorithm
based on [22]. Our goal is to not only eliminate the high-
amplitude noise but also achieve local smoothness. To achieve
this goal, we first divide the raw signal segment into partially
overlapped subsegments. Then, each subsegment is denoised
separately based on their own signal trend and merged together
by using a linear weighting mechanism.

The algorithm is shown in Algorithm 1. The input signal
is divided into m subsegments. Each subsegment contains
2n + 1 data points, where adjacent subsegments overlap by
n+1 points. For each subsegment, a polynomial function with
order K is used to fit its data to extract the respiratory signal
trend and eliminate noise. Then the denoised subsegments
are concatenated together by leveraging the overlapping area,
where a weighted sum is used to recalculate the data points in
the overlapping area. The weighted sum ensures symmetry and
effectively eliminates any jumps or discontinuities around the
boundaries of neighboring subsegments, and the subsegment
polynomial fitting ensures the local smoothness. Fig. 6(d)
shows that designed adaptive denoising algorithm (ADA) can
preserve the useful signal and filter out the noise.

The algorithm contains two important parameters: K and n.
As shown in Fig. 7, choosing different K and n can lead to
different denoising results. Since low polynomial order lacks
the ability to represent complex signal trends, setting K to a
small value may filter out the useful information. For example,
as shown in Fig. 7 (a), the periodic respiratory movement
signal is also filtered out. On the other hand, if K is too large
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Algorithm 1: Adaptive Denoising Algorithm

1 Input: (1) raw ACC data D; (2) half length of
subsegment n; (3) polynomial order K;

2 Output: denoised accleromter data array Pdenoised;
3 Function ADA(D, n, K):
4 Initialization: an empty array P ;
5 D → {d(1), d(2), d(3), .., d(m)};
6 for each data segment d(i) do
7 f ← polyfit(d(i)(x),K);
8 p(i)(x)← f(x);
9 end for

10 P .append(p(1)(x)), where x = 1, .., n;
11 for every overlap part of two adjacent denoised

subsegment do
12 p

(j,j+1)
overlap(x)←
w1 ∗ p(j)(x+ n) + w2 ∗ p(j+1)(x), where
x = 1, .., n+ 1, w1 = (1− (x− 1))/n,
w2 = (x− 1)/n;

13 P .append(p(j,j+1)
overlap(x));

14 end for
15 P .append(p(n)(x)), where x = n+ 1, .., end;
16 Pdenoised ← P ;
17 Return: Pdenoised;
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Fig. 7. The filtered ACC data (along X axis) with different ADA parameter
settings.

as shown in Fig. 7 (c), overfitting happens and there are still
too much noises.

With a small n, as shown in Fig. 7 (d), the subsegment
is too small and there is not enough information to fit the
polynomial to filter out the noise. With a large n, as shown in
Fig. 7 (f), the subsegment is too long and the fitted polynomial
lacks the capability to represent all the data variations implying
useful respiratory information. We experimentally determine
the combinations of K and s and found that when K = 4 and
n = 10, the noise is eliminated and the periodic respiratory
movement can be preserved well, as shown in Fig. 7 (b) (e).
Thus, we use such a setting in the rest of the paper.

V. DEEP LEARNING ARCHITECTURE

In order to extract informative features from the prepos-
sessed data and effectively leverage signals from three axes,
we propose a deep learning architecture as shown in Fig. 8.
First, the prepossessed data of each axis is fed to its specific

CNN-based feature extractor to obtain the corresponding deep
features. Second, these deep features are sent to two modules
in parallel - Self attention and Cross-axis correlation for
obtaining the weighted deep features of each axis and the
correlation information between any two axes. Lastly, both the
weighted deep features and correlation information are merged
in the Aggregated classification module to classify the sleep
event. The rest of this section presents the details of these four
modules.

Fig. 8. The architecture of the proposed DeepApnea model.

A. CNN-based Feature Extractor

Traditional machine learning methods can only extract
apnea features based on the designers’ domain knowledge
without exploiting the unknown apnea features, hindering their
capability of distinguishing different types of apnea events. To
solve this problem, we build a CNN to automatically extract
apnea features from the collected data.

The CNN consists of four convolutional layers and two
max pooling layers. Each layer is a non-linear operation. The
multi-layer non-linear operations make the obtained features
more sensitive to different apnea types, and less sensitive
to irrelevant variations coming from other factors such as
physical device, patient, environment, etc. The parameters of
each layer are shown in Table I. In addition, we adopt a
batch normalization layer after each convolutional layer and a
dropout layer after each pooling layer, respectively, to prevent
over-fitting.

Since different axes record wrist movements in different
directions, we prepare a separate feature extractor for each
axis. Let X = {xxi , x

y
i , x

z
i }ni=1 represents all the samples of

input data, where xxi denotes the time-series signal along the
X axis of the ith sample. The feature extractor is denoted
as F(x, θF ), where θF represents the trainable parameters of
the extractor. After feature extraction, we can obtain the deep
features Dx

i , Dy
i , and Dz

i along the three axes:

Dx
i = F(xxi , θFx

), Dy
i = F(xyi , θFy

), Dz
i = F(xzi , θFz

) (1)

Specifically, Dx
i , Dy

i and Dz
i ∈ RT̃×F , where T̃ represents

the spatial dimension and F denotes the feature dimension.
After obtaining the deep feature of each axis, they will be
sent to the Self attention and Cross-axis correlation module
for further processing.
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TABLE I
THE ARCHITECTURE OF THE CNN-BASED FEATURE EXTRACTOR.

Layer Size In Size Out Filter
conv1 584 × 1 98 × 64 24, 6
conv2 98 × 64 49 × 64 8, 2
pool1 49 × 64 24 × 64 2, 2
conv3 24 × 64 24 × 128 4, 1
conv4 24 × 64 24 × 128 4, 1
pool2 24 × 128 12 × 128 2, 2

B. Self Attention

The deep feature from different axes may carry different
amount of respiratory information due to various reasons, e.g.,
the pose of patients’ wrists and hence the smartwatch. It is
natural to assign different weights to the data collected from
different axis for measuring each axis’s equality or reliability.
Moreover, even within a single data segment collected from
one axis, some parts of the data may contain more useful
information than other parts. For example, the part of signal
spike is more representative to recognize obstructive apnea.
Therefore, in addition to setting different weights for different
axes, we also set different weights for different parts of the
data segment.

To achieve this goal, we leverage the self-attention mech-
anism. It is a weighted aggregation method to obtain better
representations of the signal and it has been successfully
applied to many deep learning applications such as sentence
embedding [23], speech and activity recognition [24] and
disease diagnosis [25]. Self-attention mimics cognitive atten-
tion. For a single data segment, it enhances some parts while
diminishing other parts. Specifically, it forces deep neural
network to devote more focus on that small but important part
of the input data. After extracting the deep features from each
axis, we apply self-attention mechanism on them separately to
assign intra-axis weights. More specifically,

Ax
i = σ(W xDx

i + bx), Sx
i = Ax

i ·Dx
i

Ay
i = σ(W yDy

i + by), Sy
i = Ay

i ·D
y
i

Az
i = σ(W zDz

i + bz), Sz
i = Az

i ·Dz
i

(2)

where is the convolution operation and · is dot product.
W and b are trainable parameters of one-layer convolution
operation. Ai ∈ RT̃×F is the self-attention weight which is
controlled by the signal sequence itself. With such a mecha-
nism, our model can learn to focus more on the informative
locations of each axis. Finally, we can obtain the weighted
deep features Sx

i , Sy
i and Sz

i .

C. Cross-axis Correlation

Although the self-attention module can assign weights au-
tomatically for each axis to obtain weighted features, it only
considers the signal from each axis independently without
leveraging the correlations among them. Since the ACC data
from all three axes can record the wrists’ movement informa-
tion collaboratively during patients’ sleep, as mentioned at the
end of Section II, we should leverage the correlation between
different axes to assign appropriate weight for each axis, which
can further improve the performance.

We assess the correlation between different axes by an-
alyzing the similarity of deep features extracted from each

axis. High similarity suggests that the two axes convey sim-
ilar apnea-related information. When such high similarity is
identified, our model puts more weights on the information
from these axes. In deep learning, the similarity of two feature
vectors is often assessed using element-wise difference [26]
[27]. Thus, we employ this method to quantify the correlation.
Taking X-axis as an example, the cross-axis correlation vector
is as follows:

D
x|y
i = Dx

i −Dy
i , D

x|z
i = Dx

i −Dz
i

Cx
i = σ(W x|yz ⊙ {Dx|y

i ⊕D
x|z
i }+ bx|yz)

(3)

where ⊙ represents the convolutional operation, and ⊕
represents the concatenate operation. W x|yz and bx|yz are
trainable parameters. The superscript denotes the axis relation-
ship, e.g., Dx|y

i means the correlation between X-axis and Y-
axis. After obtaining the correlation vector Dx|y

i and D
x|z
i , we

concatenate them together and use one fully connected layer to
extract more information to represent X-axis correlation with
the other two axes, which is Cx

i . The cross-axis correlations
Cy

i for Y-axis and Cz
i Z-axis are calculated by the same way.

After capturing the correlation vectors Cx
i , C

y
i , C

z
i , they are

sent the Aggredated classification model and served as the
cross-axis weights. By incorporating all the mutual correla-
tions among the three axes, our deep learning model can assign
higher weight to more informative axis and lower weight to
less informative axis.

D. Aggregated Classification

To capitalize on the valuable features from all axes and
allocate suitable weights to each axis, we conduct a dot-
multiplication between the output vectors of the self-attention
and cross-axis correlation modules. This enables our frame-
work to emphasize the informative parts within a single data
segment of each axis and also prioritize the more informative
axes. Specifically, we have:

Hx
i = Sx

i ⊙ Cx
i , Hy

i = Sy
i ⊙ Cy

i , Hz
i = Sz

i ⊙ Cz
i

Hxyz
i = Hx

i ⊕Hy
i ⊕Hz

i , F xyz
i = Pooling(Hxyz

i )
(4)

where Hx
i , H

y
i , H

z
i ∈ RT̃×F are the final features of each

axis combining both the result of self-attention module and
cross-axis correlation module. Then, fused feature Hxyz

i can
be obtained by concatenating Hx

i , Hy
i , Hz

i along the feature
dimension. After applying an average pooling layer on Hxyz

i ,
the final fused feature F xyz

i ∈ RT̃×F is calculated. Finally,
the hybrid fused feature is fed into a 2-layer fully-connected
network. The first layer is a fully-connected layer, which is
activated by the ReLU function, while the the second layer is
a softmax layer to calculate the probability of the four types
of sleep events. The class with the maximum probability will
be considered as the classification result.

VI. EVALUATIONS

A. Clinical Study

We conducted a clinical sleep study at at Penn State Milton
S. Hershey Medical Center, with approval by our Institutional
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Fig. 9. The number of central apnea, Hypopnea, and obstructive apnea for
each subject.

Review Board (IRB). The details of the clinical study were
presented in [15]. The study includes twenty subjects (eight
males and twelve females), and their ages vary from 36 to
72, with an average of 59.3. The subjects presented certain
diversity in terms of the severity of sleep apnea and they were
prescribed to undergo the regular polysomnography (PSG)
study without receiving continuous positive airway pressure
therapy. During the PSG study, all the patients were required to
wear Huawei Watch 2 to collect the ACC data. The smartwatch
is fully charged before recording the sensor data, to make
sure that it is able to record the sensor data for whole night
which is around eight hours. The smartwatch and the PSG
equipment time are synchronized at the beginning of recording
so that we can obtain the corresponding period of the sensor
data when apnea events occur. The sleep apnea events are
labeled by the sleep physician as the ground truth according
to patients’ PSG test. In total, we set the window size to
be 60 seconds and recorded 2822 normal sleep events, 1018
obstructive apneas, 125 central apneas, and 818 hypopneas.
Fig. 9 shows the number of sleep apnea events of each subject.
Some subjects suffer from severe obstructive apnea but mild
hypopnea such as subject 3 and subject 19, whereas others
have more hypopnea but less obstructive apnea. In general,
the number of central apnea is much smaller than that of
obstructive apnea and hypopnea.

B. Comparing Methods

Since there is no existing work for identifying four types of
sleep apnea events using purely wrist-worn ACC, we choose
the following relevant methods as baselines.

1) Traditional machine learning methods: Many traditional
machine learning approaches such as naive bayes (NB), de-
cision tree (DT) , random forest (RF), adaboost (ABT) and
support vector machine (SVM) have been widely used for
recognizing time-series signal. For example, [28] successfully
identifies fingerprints by recognizing fingerprint-induced sonic
waves through LR, SVM and RF. ApneaDet [15] applies RF
on different hand-crafted features of the ACC signal (e.g.,
peak distance, peak number, and peak amplitude) and realizes
high recognition accuracy on binary sleep apnea classification
task. In our evaluation, we compare with NB, DT, SVM,
RF, and ABT. For fair comparison, we use the same signal
processing pipeline introduced in ApneaDet to extract hand-
crafted features, and use the same hand-crafted features such as

peak distance, peak number, and peak amplitude introduced in
ApneaDet as input features. Note that ApneaDet has the same
performance as RF since it uses RF as the classifier.

2) Deep learning methods: Comparing to traditional ma-
chine learning methods, deep learning based methods have
been proved to be more effective on analysing time-series
signal in many applications. AHF-CNN [29] adopts a 6-
layer convolutional neural network to automatically extract
features based on the ACC data collected by IoT devices for
human fall detection. However, this method only considers
the triaxial ACC data as one single input feature with three
dimensions without considering different modalities of the
three inputs. For fair comparison, we also compare to the
following two methods which consider multi-modal or multi-
view data as their inputs. The first is MM-CNN [30], which
designs a multi-channel CNN model for learning the features
from different types of polysomnography signals (e.g., EEG,
EMG, and EOG) to distinguish sleep stages. Although, for
each type of PSG data, MM-CNN adopts a separate CNN
channel to learn the signal’s temporal context information,
it treats all the channels equally and does not exploit the
consensual and complementary information between them.
The other one is DeepSense [31], which is a deep learning
framework for analysing the signals from different mobile
senors. It first converts the original signal of different mobile
sensors into the frequency domain, and then leverages CNN
and RNN to take advantage of the interactions among different
input modalities. Although DeepSense has been demonstrated
being effective in multiple challenging tasks through learning
the correlation between different types of input signals, the
quality of these inputs is not well considered. In DeepApnea,
our self-attention module are designed to address this problem.

C. Experiment Setup

All the collected raw ACC data are preprocessed based
on the techniques introduced in Section IV, i.e., resample
at 8Hz, signal denoising, and normalization. Then, we train
and examine the proposed DeepApnea model based on the
processed data.

To train our DeepApnea model, we use categorical cross-
entropy to calculate the training loss and adopt the Adam
optimizer for updating the model’s parameters. All the pa-
rameters are initialized using HeNormal initializer and we
train the model for 500 epochs with initial learning rate
of 0.005. Specially, we apply the 3-fold cross-validation for
apnea classification. The final results are calculated based on
the mean values of these cross-validation experiments. The
performance is measured in terms of accuracy and F1-score.

D. Overall Performance Comparison

We compare the overall performance of DeepApnea with
different machine learning methods introduced in Section
VI-B, and the results are shown in Fig. 10. As can be seen
from the figure, DeepApnea achieves the best performance in
terms of accuracy and Macro-F1 scores. By comparing Fig. 10
(a) and (b), we can see that the performance improvement of

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

212



NB DTSVM
ApneaDet ABT

AHF-CNN
MM-CNN

DeepSense

DeepApnea0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(a) Accuracy

NB DTSVM
ApneaDet ABT

AHF-CNN
MM-CNN

DeepSense

DeepApnea

0.4

0.6

0.8

M
ac

ro
 F

1-
sc

or
e

(b) Macro-F1 score

Fig. 10. Overall performance comparison.

DeepApnea is much higher when Macro-F1 score instead of
accuracy is used as the performance metric. As explained in
the last section, accuracy is a good metric to show the overall
classification result. Due to the imbalance of the data set, the
result is dominated by the classification of normal events, and
it cannot accurately reflect the classification results of different
types of sleep apnea events. By treating different sleep events
equally, macro-F1 score can better reflect the classification
results of different types of sleep apnea events.

Traditional machine learning methods do not perform well
on distinguishing different types of apneas. For instance, while
ApneaDet [15] can achieve a high F1-score (Fig. 11 (a))
on binary classification task, its F1-score drops to around
55% when applied to this multi-classification task. Com-
pared to traditional feature-based machine learning methods,
deep learning methods perform better. As shown in Fig. 10
(a), AHF-CNN, MM-CNN, DeepSense, and DeepApnea have
higher accuracy than NB, DT, SVM, ApneaDet, ABT. Similar
advantage can also be seen in Fig. 10 (b). This is because tra-
ditional feature-based machine learning method only considers
the properties of respiratory peaks as the hand-crafted features
which ignores the signal trend and other potentially useful
apnea characteristics. On the other hand, deep learning-based
methods do not adopt hand-crafted features and automatically
learn the appropriate features for sleep apnea classification.

Compared to other deep learning based methods, our
DeepApnea model can achieve much better performance.
Specifically, compared to AHF-CNN, our model improves
the accuracy by 5.2% and improves the macro-F1 score by
18.9%. This is because AHF-CNN only considers the triaxial
ACC data as one single feature without considering different
modalities among the three inputs. As a result, the information
from different axes cannot be effectively leveraged, and hence
underperforms our model. Compared to MM-CNN, our model
improves the accuracy by 4.9% and improves the macro-F1
score by 17.9%. Although MM-CNN considers the ACC signal
from each axis, it treats data from each axis equally and does
not take advantage of the correlation between different axes.
Compared to DeepSense, our model improves the accuracy by
3.8% and improves the macro-F1 score by 16.7%. Although
DeepSense extracts the correlation information between differ-
ent axes, it does not consider the quality of the input signal,
and hence underperforms our model.

E. Per-class Performance

In this subsection, we compare the performance of different
methods on classifying sleep events into four types: normal,
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Fig. 11. Per-class performance comparisons.

hypopnea, obstructive apnea, and central apnea. For normal
sleep events, as shown in Fig. 11 (a), traditional machine
learning methods can achieve almost perfect performance (i.e.,
about 97% using DT, RF, and ABT) based on hand-crafted
features introduced in ApneaDet [15]. This is consistent with
the results in [15], which only focuses on classifying sleep
events into normal and sleep apnea.

For hypopnea, obstructive and central apnea, as shown
in Fig. 11 (b), (c) and (d), deep learning-based methods
outperform traditional methods. In Fig. 11 (d), we can see
that SVM and ApneaDet underperform other traditional meth-
ods. This is attributed to their necessity to map simple
hand-crafted features into a highly dimensional space, lead-
ing to potential overfitting with limited central apnea data
(Hughes Phenomenon). Different from APT-CNN, MM-CNN
and DeepSense, DeepApnea leverages self-attention and cross-
axis correlation modules to obtain better features and adopts
several techniques for preventing overfitting such as the batch-
normalization layers and dropout layers. Thus, DeepApnea can
achieve the highest F1 score on central apnea.

Overall, our DeepApnea model can achieve 99.3%, 71.6%,
82.8% and 68.2% F1 score for normal sleep, hypopnea,
obstructive apnea, and central apnea.

F. Axis Data Fusion Study

In DeepApnea, data from three axes are leveraged. In this
section, we demonstrate why such data fusion is necessary
for improving performance. We compare DeepApnea with the
following simplified models.

• DeepApnea-X (DeepApnea-Y/DeepApnea-Z): It only
takes the ACC data from X-axis (Y-axis/Z-axis) as the
input. Since there is only data from a single axis, there
is no cross-axis correlation.

• DeepApnea-XY (DeepApnea-YZ/DeepApnea-XZ): It
takes the ACC data from X-axis and Y-axis (Y-axis
and Z-axis)/(X-axis and Z-axis) as the input. Since
data from two axes are used, cross-axis correlation and
self-attention techniques are also applied.

Fig. 12 (a) shows the overall performance of these sim-
plified models. As can be seen, DeepApnea significantly
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Fig. 12. performance comparisons for data fusion models leveraging inputs from various number of axes.

outperforms three other two-axis fusion models (DeepApnea-
XY, DeepApnea-YZ, DeepApnea-XZ), which outperform
the one-axis fusion models (DeepApnea-X, DeepApnea-Y,
DeepApnea-Z). This demonstrates the benefits of leveraging
data from three axes.

Fig. 12 (b)(c)(d)(e) show the per-class performance of
these simplified models. Similar to the results in Section
VI-E, for normal sleep events, all models can achieve al-
most perfect performance (i.e., above 98%). For hypopnea
and obstructive apnea, as shown in Fig. 12 (c) and (d),
DeepApnea significantly outperforms the three two-axis fusion
models (DeepApnea-XY, DeepApnea-YZ, DeepApnea-XZ),
which outperform the one-axis fusion models (DeepApnea-X,
DeepApnea-Y, DeepApnea-Z).

For central apnea, as shown in Fig. 12 (e), DeepApnea
significantly outperforms the three two-axis fusion models
and the three one-axis fusion models. Because the number
of central apnea events is very small compared to other
sleep anpea events in our dataset, the single-axis and two-
axis fusion models do not perform well. DeepApnea leverages
information from all axes and considers their correlations, and
hence obtains more informative and representative features,
outperforming the simplified models.

G. Ablation Study

In this subsection, we validate the effectiveness of the
proposed self-attention and cross-correlation modules by com-
paring with the following two models: DeepApnea-SelAtt,
which only contains the CNN-based feature extractor and the
self-attention module without the cross-correlation module,
and DeepApnea-CroCor which only contains the CNN-based
feature extractor and the cross-correlation module without the
self-attention module.

TABLE II
ABLATION STUDY

Method Normal Hypopnea Obstructive Central
DeepApnea-SelAtt 98.75% 66.02% 76.95% 38.30%
DeepApnea-CroCor 98.63% 64.64% 75.72% 35.09%

DeepApnea 99.53% 71.58% 82.86% 68.29%

According to Table II, DeepApnea clearly outperforms the
other two, which illustrates that both self-attention and cross-
correlation modules help extract informative features from the
raw ACC data. Specifically, for normal sleep event, compared
to DeepApnea-SelAtt and DeepApnea-CroCor, there is little
improvement when using DeepApnea model. This is because
the breathing pattern of normal sleep is significantly different
from that of sleep apnea so that even the incomplete models

can achieve almost perfect F1 score. For hypopnea, compared
to DeepApnea-SelAtt and DeepApnea-CroCor, the improve-
ments are 5.56% and 6.93% respectively. For obstructive
apnea, the improvements are 5.9% and 7.14%. Finally, for
central apnea, the improvements are 29.9% and 33.2% re-
spectively, which demonstrate that the self-attention and cross-
correlation modules can significantly improve performance
especially when the training dataset is small.

H. Comparison of the Denoising Methods

In this section, we compare how different denoising meth-
ods, i.e., ADA, moving average, and TV filter, affect the
performance of the proposed DeepApnea model.

TABLE III
COMPARISON OF DIFFERENT DENOISING METHODS.

Denoising Method Normal Hypopnea Obstructive Central
Moving average 98.51% 42.55% 69.8% 24.02%

TV filter 99.05% 65.05% 78.57% 38.10%
ADA 99.53% 71.58% 82.86% 68.29%

As shown in Table III, DeepApnea can achieve the best
classification result when ADA is used for denoising. The
moving average filter has the worst performance because it
may remove potential useful apnea information by simply av-
eraging different sub-sequences of the raw signal. Specifically,
the F1 score of using moving average filter is 42.55%, 69.8%
and 24.02% for hypopnea, obstructive apnea, and central
apnea, respectively. Although the TV filter can preserve the
useful signal information, it cannot eliminate low-amplitude
noise. As discussed in Section IV-B, our ADA method not
only keeps the periodic respiratory information but also re-
moves all unnecessary noise. Therefore, compared to TV filter,
using ADA can further improve the F1 score by 6.7%, 4.3%
and 30.19% on classifying hypopnea, obstructive apnea, and
central apnea, respectively.

I. System Profiling

When running DeepApnea, the acclerometor data from
the smartwatch can be moved to the smartphone through
Bluetooth. Based on the clinical study introduced in Section
VI-A, the total size of the raw ACC data from a single subject
during 8 hours measurement is about 45 MB, which can be
transformed from a smartwatch to a smartphone within three
seconds through Bluetooth 5.0.

In order to measure the running time of proposed DeepAp-
nea model on modern smartphones, we implemented Deep-
Apnea on several smartphones based on TensorFlow Lite.
As shown in Table IV, it only takes two or three seconds
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to generate the classification results from the data over a
whole night measurement (e.g., eight hours). We also consider
the energy consumption of DeepApnea on smartwatch. When
running DeepApnea, the smartwatch has to constantly record
the real-time data of ACC and write them into the watch’s
external storage (e.g., SD card).

TABLE IV
THE RUNNING TIME OF DEEPAPNEA ON SMARTPHONES.

Smart Phone Processing Unit Preprocessing
(seconds)

Deep Learning
Inference (seconds)

Google Pixel 3 Snapdragon 845 1.38 2.36
Huawei Mate30 Pro Kirin 990 0.83 1.22

Google Pixel 6 Google Tensor 0.45 1.01

We measured two modern commercial smartwatches: (1)
Huawei Watch 2; (2) Apple Series 6. During the measurement,
we close all irrelevant applications and turn off the watches’
screen to make sure the power usage comes from the operating
system and DeepApnea. Table V shows their battery usages
for running or not running DeepApnea for a whole night. As
can be seen, running DeepApnea for eight hours on Huawei
watch 2 drains 55% of battery. For more advanced smart watch
Apple Series 6, the watch battery only drains 23%. It shows
that modern smartwatches can support DeepApnea for running
at least one night.

TABLE V
THE BATTERY USAGE (MAH)

Smart Watch w/o DeepApnea w DeepApnea
Huawei Watch 2 (420mAh) 49.2 mAh 229.8 mAh
Apple Serise 6 (303.8mAh) 24.6 mAh 69.6 mAh

VII. DISCUSSIONS

In this paper, we focus on identifying various types of
sleep apnea using accelerometers in smartwatches. While
evaluations demonstrate the superior performance of Deep-
Apnea, it can be further improved by considering other
sensors besides accelerometer. Sleep apnea not only disrupts
typical respiratory patterns, affecting the accelerometer signal
on smartwatches, but also induces cardiovascular variations,
resulting in fluctuations in oxygen saturation (SpO2) and heart
rate. In recent years, there has been an integration of new
physiological sensors into smartwatches, such as the oximeter
sensor and photoplethysmography (PPG) sensor. These sensors
enable the measurement of oxygen saturation and heart rate.
By incorporating data from these new sensors, we could
achieve more accurate and robust apnea detection through
smartwatches.

One limitation of our dataset is its small size, comprising
data from only 20 subjects. Although the dataset has plenty
of obstructive apneas and hypopneas, the number of central
apneas is limited, with the majority occurring in subjects 10
and 13. Moreover, several subjects do not have central apneas
such as subjects 4, 9, and 12. As a result, in our 3-fold
cross-validation, the 125 central apnea events are split into
training and testing sets, without checking whether they are

from the same subject. From Fig. 9, we can see that the
apnea distribution varies significantly across different subjects.
Consequently, the limited dataset may impact the generaliz-
ability of DeepApnea when applied to new users, potentially
leading to large variations in predictions. To provide a more
comprehensive evaluation of our model, we plan to conduct a
larger clinical study in the future.

VIII. CONCLUSION

In this paper, we presented DeepApnea, a deep learning
based sleep apnea detection system that leverages patients’
wrist movement data collected by smartwatches to identify
different types of sleep apnea. We first proposed signal prepro-
cessing methods to filter the raw ACC data, smoothing away
noise while preserving the respiratory signal and potential
features for identifying sleep apnea. Then, we designed a deep
learning architecture to extract features from three ACC axes
collaboratively. Specifically, we apply self attention technique
to accentuate more significant features and apply cross-axis
correlation technique to exploit the correlations among dif-
ferent axes. The extracted deep features and the correlation
information are merged through aggregated classification to
further improve the classification accuracy. Through a clinical
study, we demonstrate that DeepApnea outperforms existing
solutions on multiclass classification. More specifically, Deep-
Apnea can detect different sleep apnea with high F1-score, i.e.,
normal sleep (99.5%), obstructive apnea (82.9%), hypopnea
(71.6%), and central apnea (68.3%). Finally, by profiling
DeepApnea on different commodity devices, we demonstrate
that it is practical to apply our system on modern smartwatches
and smartphones.
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