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Abstract—Pervasive Augmented Reality (AR) requires ac-
curate pose registration of the device in real-time at a
neighbourhood-to-city scale. At such a scale, most pose regis-
tration techniques suffer from exponential computational and
storage costs and a significant data collection burden. This
paper introduces AnchorLoc, a framework that relies on visual
anchors (stable and highly recognisable visual elements in a
scene) to perform fast and accurate pose registration. Anchorloc
automatically identifies these anchors from large image sequences
to optimise the search space in later image retrieval and pose
registration. As such, it significantly improves the computational
efficiency of existing hierarchical localisation pipelines without
compromising accuracy. We collect a large-scale localisation
dataset consisting of image sequences and 3D reconstruction of
a university campus. AnchorLoc reduces localisation runtime
by 83% on our campus dataset and 69% on the Cambridge
Landmarks dataset without significantly increasing mean pose
estimation errors. It is also more accurate and faster than SLD,
a localisation algorithm that takes a comparable approach at
the keypoint level. This work informs the development of more
efficient pervasive AR applications that rely on both absolute and
relative camera pose tracking on image sequences.

Index Terms—Camera relocalisation, Visual-Inertial Odome-
try, Augmented Reality

I. INTRODUCTION

Visual localisation is a core component of modern aug-
mented reality (AR). It plays a vital role in overlaying virtual
objects in the environment by estimating the location and the
orientation of the device within a map. Recent developments
in visual localisation methods have allowed camera pose esti-
mation, which is highly accurate to centimetre levels on large-
scale environments [1], paving the way towards pervasive AR
applications at neighbourhood or city-scale.

Most localisation pipelines involve large amounts of storage
and computational resources, which render them impractical.
Persistent AR experiences require virtual objects to remain in
the same physical location and be displayed consistently on
different user devices over long periods of time. Implementing
such applications at a large scale incurs heavy computation
and storage for data capture, 3D map building and online
camera localisation. Structure-based methods [2]–[5] rely on
structure-from-motion (SfM) [6], [7] that constructs accurate
3D representations when given a set of images taken in the
environment. Both 3D reconstruction and localisation require

significant computation and storage, and their accuracy is
highly sensitive to visual changes in the environment. Adding
posters on walls, moving furniture, or naturally growing veg-
etation requires frequent map updates to preserve accurate
camera localisation. Pose regression models [8]–[10] implic-
itly encode the 3D map into a convolutional neural network
(CNN) and directly regress the camera pose from an input
image. While this reduces the load on both computation and
storage, they tend to overfit their training set and may yield
highly inaccurate pose estimations [11]. As such, most imple-
mentations rely on server-side pose estimation, which incurs
large latencies, raises privacy concerns (and legal concerns in
some countries [12]), and centralises pervasive AR experiences
in the hands of the few actors who can combine large amounts
of visual data with considerable server-side computation and
storage.

This paper introduces AnchorLoc, a framework for fast on-
device pose estimation without compromising accuracy. An-
chorLoc quickly recognises visible objects, associating them
with specific locations to infer the device’s pose. It abstracts
a large visual positioning dataset as a finite collection of
small-scale point clouds centred around visual anchors that
are highly recognisable and stable objects in the dataset.
AnchorLoc builds upon hierarchical localisation methods [1],
[13] to optimise the search space using object detection
for fast and accurate localisation. Figure 1 illustrates the
overall localisation process of AnchorLoc and its runtime
optimisations. The localiser uses a real-time object detection
model such as YOLO [14] to detect anchors in the query
image, which are then matched to the anchor information
stored in the database to limit the search space during image
retrieval and keypoint matching. While many AR applications
rely on relative localisation algorithms such as visual-inertial
odometry (VIO), they are also prone to errors resulting from
drift. Thus, frequent relocalisation using fast and accurate
absolute localisation algorithms is essential. Upon detecting
an anchor, AnchorLoc (re)positions the AR experience, relying
on relative localisation, such as VIO, to track the device’s pose
between anchors.

AnchorLoc also presents a novel method for automated
anchor extraction that identifies anchors from the image se-
quences and point clouds of a large-scale environment. We
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define anchors as elements in the environment that are (1)
highly recognisable, (2) visually distinctive, and (3) stable.
These properties overcome several limitations of existing ap-
proaches, enabling reliable and persistent anchoring of virtual
objects in AR. The automatic extraction of anchors reduces the
memory footprint of the localisation system by replacing the
large point cloud database in areas rich with anchors with a
finite set of anchors extracted from the database. By being
feature-rich and distinctive, anchors also facilitate the later
steps of the localisation pipelines. As such, anchor detection
also ensures accurate localisation, solving the issue of when
to (re) localise the experience. Finally, its automated nature
facilitates adapting to scene changes by running on newly
collected data and updating the anchor database accordingly.

The automated anchor extraction module, in combination
with the anchor-based localisation mechanism, allows the
implementation of a real-time camera localisation system with
improved memory efficiency and automatic adaptation to long-
term scene changes. Focusing on a collection of small-scale
areas also simplifies the data collection process, reduces the
need for frequent map updates, and improves privacy. We
believe AnchorLoc is the first system to enable on-device
persistent AR experiences at large scales, towards pervasive
AR. We demonstrate the effectiveness of AnchorLoc on two
popular indoor and outdoor datasets [8], [15], and a new
campus dataset, resulting in up to 70∼80% runtime reduction
over all datasets.

The contribution of our paper is fourfold:

• Propose a novel localisation pipeline based on visual an-
chor identification in the training dataset and subsequent
detection to reduce the search space.

• Collect a large university-scale dataset with corner cases
that mimic real-life localisation scenarios (repetitive tex-
tures, low-feature areas, poor coverage of visible areas).

• Develop AnchorLoc, a complete localisation system.
• Evaluate AnchorLoc against two leading localisation

methods (HLoc and SLD) over three datasets. AnchorLoc
improves runtime by over 69% without a significant
reduction in accuracy compared to HLoc while improving
the runtime by 66% and accuracy by 39% compared to
SLD.

II. RELATED WORKS

Visual localisation is an active topic in the computer vision
community. Prominent works include structure-based local-
isation, object-based localisation, and localisation methods
focusing on scalability. Other works provide representative
datasets to evaluate visual localisation algorithms.

Structure-based Localisation. Structure-based methods es-
timate the camera pose by extracting keypoint correspondence
between the query image and a 3D reconstruction of the envi-
ronment. They present a high accuracy at the cost of significant
computation and storage. The 3D reconstruction is often
created using a sequence of images through Structure-from-
Motion (SfM) methods such as COLMAP [6], [7]. Numerous

works improve the localisation by using learned features [16]–
[18] for keypoint extraction and matching. Specifically, R2D2
[18] detects discriminative keypoints for improved matching.
Comparatively, AnchorLoc focuses on discriminative and sta-
ble objects to ensure adaptability to dynamic environments.
SuperGlue [19] performs context-aware keypoint matching
using graph neural networks (GNNs) to obtain 2D-3D cor-
respondences. Li et al. [20] combine visual and depth data
to optimise the accuracy of the 3D map. Recent works on
structure-based localisation also focus on alternative scene
representations such as lines [21] and dense 3D meshes [22] to
improve accuracy, robustness, and flexibility. Although these
methods are the most accurate, they lack the computational
efficiency required in time-sensitive applications. AnchorLoc
maintains the high accuracy required for large-scale AR ap-
plications with improved efficiency.

Scalable Localisation. Localisation in large-scale envi-
ronments tends to be resource-intensive, making scalable
localisation an open research area. Hierarchical localisation
approaches use image retrieval methods to limit the search
space when looking for 2D-3D correspondences [23], [24].
Sarlin et al. [13] perform coarse-grained matching to retrieve
images, followed by covisibility clustering and fine-level fea-
ture matching to increase scalability. However, this approach
depends on the accuracy of the image retrieval method. Sattler
et al. [3] propose a prioritised keypoint matching scheme using
visibility information from SfM. Yang et al. [25] utilise cluster-
ing, pruning, and quantisation to compress the 3D model of the
scene while maintaining localisation accuracy. Do et al. [15]
extract scene landmarks or discriminative keypoints from the
constructed 3D model and perform localisation by predicting
the scene landmark locations within the query image. Although
significant progress has been made in the scalability of local-
isation algorithms, these works do not address realistic chal-
lenges posed in AR applications, such as lacking estimation
accuracy in large-scale, dynamic environments. AnchorLoc’s
unique anchor-based approach maintains a high accuracy and
resilience to changes in the environment and offers better
privacy guarantees through on-device operation.

Object-based Localisation. Several works use information
regarding objects in the environment for visual localisation.
Weinzaepfel et al. [26] uses a CNN to detect and segment
Objects-of-Interest (OOIs), or highly descriptive objects in
the environment to obtain dense keypoint matches. Benbihi et
al. [27] propose object-guided localisation that detects objects
of a single class to guide keypoint matching. Zins et al. [28]
improve the Simultaneous Localisation And Mapping (SLAM)
system by using high-level object landmarks by building an
automated system that detects and tracks objects with 3D
ellipsoids. However, the object detection in these approaches
is either limited to a single class [26], [27], requires manual
annotation [26], or is tested only in small-scale, controlled
indoor [28], or synthetic environments [26]. AnchorLoc auto-
matically extracts and detects multiple classes of distinct and
stable objects and produces fast and accurate pose estimations
even in large-scale (indoor and outdoor) settings.

2
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Fig. 1. Overview of AnchorLoc’s visual localisation process. AnchorLoc 1) rapidly detects anchor i (previously registered by our anchor extraction pipeline)
from the query image, 2) retrieves the most similar image out of the set of images that contain anchor i and 3) performs keypoint matching to obtain 2D-3D
keypoint correspondences to the 3D keypoints corresponding to the anchor, and runs PnP solver to obtain the pose estimation. Runtime reductions from
existing image retrieval-based localisation method [13] on our Campus localisation dataset are shown at the bottom.

Localisation Datasets. Existing datasets are intended to
provide challenges that could be encountered in real-life local-
isation scenarios, especially the dynamic nature of the envi-
ronment. These include illumination changes (day-night) [15],
[29], seasonal variations [30]–[32] and dynamic objects in the
environment (vehicles, people) [8], [33]. The datasets vary in
their scale from small indoor [4], [15], [34], [35] to large
indoor and outdoor scenes [8], [29]–[33]. Our newly collected
campus-scale dataset aims to test localisation performance
in large indoor environments where data was collected from
multiple users over a long period.

III. ANCHOR-BASED LOCALISATION

AnchorLoc extracts distinctive objects in sight, namely an-
chors, from sequences of frames taken within the environment.
These anchors are leveraged to provide real-time structure-
based visual localisation methods in large-scale environments.

A. Anchor Extraction

We extract the anchors from a database of image sequences
used to build the 3D reconstruction of the environment.
Each sequence is assumed to be captured at different times.
Anchor extraction from the image database is performed
through 1) anchor candidate identification and extraction and
2) candidate scoring and ranking.
We selected the anchors from a set of candidate objects that
were captured in the environment. To obtain the candidate set,
we used an existing open-world object detection method [36]
to detect objects of classes that are not necessarily predefined.
The open-world property of this class of detectors allows the

Fig. 2. Illustration of the anchor extraction pipeline. 1) Anchor candidates
are extracted from image sequences through open-world object detection, 2)
scored and ranked according to distinctiveness and stability, and 3) saved to
the database along with detected frames Di and keypoints Ki.

extraction algorithm to choose from a set of objects that are
not confined to a small set of classes, thus allowing diverse
objects with distinct visual elements to be included in the set.
For an accurate localisation, we assume that anchors must
fulfil two properties: distinctiveness and stability. Each
candidate is scored and ranked by a metric that captures both
aspects. Distinctiveness of each anchor is vital in ensuring
that each anchor detection is associated with one unique set
of keypoints corresponding to the anchor. Stability requires
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Fig. 3. Non-stable and non-distinctive objects, showing which factors con-
tribute to the two properties. (Left) Candidate 51 at sequence i is mapped to a
different position at sequence i−1 and not found in sequence i+1, leading to
low stability. (Right) There exist other candidates with high feature similarity
(low cosine distance) but at different locations, showing low distinctiveness.

detections of each anchor to be consistently found in different
sequences taken at different times and mapped to the same
set of point clouds in the constructed 3D model. A lack of
either of these properties would likely lead to inaccurate pose
estimations. For example, detecting a non-distinct, unstable
(i.e. moving) object such as a chair could be mapped to a
different instance of a similar-looking chair, or the detected
chair might have moved to another location, leading to
spurious keypoint matches. Figure 3 illustrates an example of
a non-stable, non-distinct object in the environment to clarify
the properties of stability and distinctiveness.

The anchor score Sanchor is a weighted sum of Sd and
Ss, each measuring the distinctiveness and stability properties,
respectively. The scoring algorithm is elaborated in Algorithm
1, which outputs anchor score Sanchor of candidate c given
balancing factor λ, thresholds for image feature and keypoint
distances ϵf and ϵk, and a total number of sequences Nseq .
Ss is proportional to the number of sequences that include
detections with high feature similarity (similar appearance)
and keypoint maps to the same location. Sd is inversely
proportional to the number of candidates within the same
sequence with high feature similarity but maps to a dif-
ferent location. Therefore, the score prefers candidates that
were detected more times in other sequences at the same
location (stability) but do not appear at different locations
within the same sequence (distinctiveness). We calculate the
feature vector for each candidate c using a CNN backbone
network [37] and define the keypoint location as the centre
(x, y, z) coordinate of all the 3D keypoints corresponding to
the candidate. The image feature distance δf and keypoint
distance δk are calculated between c and other candidates
in each iteration. δf is calculated as the cosine similarity
between the image feature vectors of each candidate, and δk
is calculated as the Euclidean distance between the keypoint
locations of each candidate. δf ≤ ϵf implies that the two
candidates have a similar appearance, and δk ≤ ϵk means the
3D keypoints of the two candidates map to the same location.
We chose candidates with top Sanchor as anchors for fast local-
isation when detected. During the ranking process, candidates

with similar image features and the same keypoint coordinates
in the 3D model are grouped as one candidate since multiple
detections of the same object exist among different images.
Additionally, these multiple detections of the same candidate
were used as training data for the object detection algorithm
used to detect anchors in query images. Also, we performed
image retrieval on this set of images, labelled Di, during the
localisation process for each selected anchor i. Image set Di,
and the set of 3D keypoints Ki corresponding to each anchor
i were stored in the database.

Algorithm 1 Anchor Score Sanchor Calculation
Require: c, λ, ϵf , ϵk, Nseq

fc,Kc, seqc = feature vector, keypoint set, and sequence
number of candidate c respectively
nd, ns, nall = 0
for i = 1, 2, ..., Nseq do

Ci = set of all candidates in sequence i
for c′ ∈ Ci, c

′ ̸= c do
δf , δk = feature and keypoint distance between c and
c′ respectively
if seqc = i then
nd = nd + 1 if δf ≤ ϵf and δk > ϵk
nall = nall + 1

else
ns = ns + 1 if δf ≤ ϵf and δk ≤ ϵk
break

end if
end for

end for
Sd = 1

nd
, Ss =

ns

Nseq

return Sanchor = Sd + λSs

B. Anchor Detection and Localisation

To localise query images, we first detect anchors using a
trained single-stage object detection algorithm [14]. We use
the information on the anchor stored in the database to limit
the search space for image retrieval and keypoint matching,
thereby allowing real-time visual localisation.

Single-stage detectors [14], [38], unlike two-stage detec-
tors [39]–[41], operate in real-time, which allows them to
integrate other tasks which require real-time performance. We
fine-tune a pre-trained YOLO [14] detector on the set of
anchors collected during the anchor extraction process, with a
train/validation split of 0.7:0.3. We only use anchors that show
at least 0.9 mAP (mean average precision) on the validation
set, which is achieved on anchors with at least 20 training
samples (|Di| ≥ 20).

For the localisation process, we build upon the hierarchical
localisation scheme as in Sarlin et al. [13] by first running
global image retrieval to retrieve the most similar database
image, followed by feature matching on two images and
performing pose estimation by solving the PnP problem [42] in
RANSAC [43] loop. Figure 4 outlines the overall localisation
process. Suppose a query image Iquery is given, and anchor i

4
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Fig. 4. Illustration of the localisation process. 1) Anchor i is detected
at real-time speed, then 2) image retrieval among Di is performed. Then,
3) keypoint matching with the retrieved image on anchor i returns 2D-3D
keypoint matches with Ki, which is 4) used to perform pose estimation.

is detected. We run an image retrieval algorithm for Iquery on
Di to retrieve the most similar database image that contains
anchor i. Within the two images, we run keypoint matching
on 2D keypoints, which exist inside the bounding box for
the detected anchor. Then, we infer the 2D-3D match from
the query image to the 3D point cloud Ki by transitivity
using the 2D-2D keypoint matches and the 2D-3D keypoint
correspondence information from the database image to 3D
keypoints. Finally, we obtain the estimated six-degree-of-
freedom (6 DoF) pose by solving the Perspective-N-Point
(PnP) problem [42] using the 2D-3D keypoint matches within
a RANSAC [43] loop.

The performance gain comes from the significant reduc-
tion in search space during the image retrieval and keypoint
matching steps using the information from the detected anchor.
Additionally, since the runtime complexity of PnP solver [42]
is linearly proportional to the number of 2D-3D keypoint
correspondences, it also results in a significant gain in the
absolute pose estimation phase. The additional computational
overhead for object detection during inference time is minimal,
resulting in a significant overall inference time reduction.

IV. DATASETS

There are many datasets for evaluating visual localisa-
tion methods that pose challenges, such as the dynamic
nature of the environment, especially seasonal or illumination
changes [29]. Some datasets are created from crowdsourced
images taken in a popular location [44], which could serve
as a realistic scenario on a large-scale platform where crowd-
sourced user data is collected and used to improve the system.

The anchor-based localisation method outlined in the pre-
vious section is expected to be particularly useful in environ-
ments with plenty of objects and structures that can be used
as anchors. Additionally, mining anchors from data collected
over an extended period from multiple users would allow our
method to collect stable anchors, add new anchors from newly
collected data, and eliminate old ones. We evaluate our method
on existing indoor and outdoor localisation datasets [8], [15]

Fig. 5. Challenges introduced by the Campus Dataset. Left shows an example
of a scene change over time t1 and t2, one month apart, and right shows an
example of visual homogeneity, with similar-looking visual structures 500
meters apart.

and a new large-scale, dynamic, and anchor-rich dataset cap-
tured on different devices by multiple users.

Large environments such as university campuses often con-
tain objects and structures that exhibit distinctiveness and
stability and could be used as anchors. Examples would
include a large poster, a statue, or a distinctly recognisable
part of a building facade. Our new dataset includes sequences
of images and a 3D Structure-from-Motion (SfM) model taken
in a large indoor area within a university campus.

On the other hand, a campus dataset introduces interesting
challenges for our method, as depicted in Figure 5. As a living
space, a campus changes significantly over time. Banners
are added to promote events, furniture is moved around,
and many feature-dense elements have low temporal stability.
Another issue stems from the campus’s large scale and strong
architectural identity. The university campus features many
repetitive patterns and textures at different places, leading to
low distinctivity of high-feature areas. As such, this dataset
allows evaluating our method on a large-scale, complex sce-
nario that could be commonly encountered in pervasive AR
applications such as urban AR.

Images of a large indoor campus environment were col-
lected from 3 participants using mobile phone cameras. Par-
ticipants were instructed to take photos of the surrounding
environment while walking through a large indoor area, ap-
proximately 800 m long. They were collected on different days
spanning over two months, during which there were changes
in the scene (e.g., new posters were hung on the wall). A
total of 15 sequences were collected from 3 participants, each
consisting of 70 to 80 images. All people captured in the
images were blurred for privacy reasons. The 3D model of
the large indoor campus area was built from COLMAP [6],
[7], which includes the registered 6 DoF poses of each frame,
the 3D point cloud and the 2D-3D keypoint correspondences.

V. EXPERIMENTAL RESULTS

We evaluate AnchorLoc’s localisation performance on three
datasets with different scales: Cambridge Landmarks [8]
dataset - St. Mary’s (large outdoor), Indoor 6 [15] (small
indoor) and our CampusDataset (large indoor). These three
datasets are the only datasets that present sequences of images
captured at different times, allowing us to extract stable
anchors and contain a sufficient number of images to run
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Fig. 6. Visualisation of a portion of the 3D point cloud built with
COLMAP [6], [7] and positions of the selected anchors. Anchors are marked
with a red point and their (x, y, z) coordinates. We also show one of the
images and bounding boxes for each anchor.

Structure-from-Motion and our anchor extraction pipeline. Ex-
periments on Cambridge Landmarks (approximately 4800m2

wide, 2000 frames) and our CampusDataset (approximately
7300m2 wide, 1200 frames) show localisation performance
under large-scale areas, while the Indoor 6 dataset (small
indoor area with 7000 frames per scene) focuses on small,
home-scale indoor spaces.

We compare AnchorLoc’s localisation accuracy and infer-
ence time to those of HLoc [13], a conventional hierarchical
localisation method, and SceneLandmarkDetector(SLD) [15],
a method that extracts stable keypoints named ’scene land-
marks’, comparable to anchors at keypoint level. We select
these methods as baselines since (1) our method focuses on
increasing the scalability of hierarchical localisation methods
(HLoc), and (2) our method also aims to automatically identify
stable visual elements in the environment and leverage them
for efficient localisation (SLD).

A. Implementation Details

Anchor Extractor. We use Object Localization Network
(OLN) [36] to get the bounding box for each candidate
anchor. The detection confidence threshold is fixed at 0.8.
To extract the image feature used for the scoring phase,
we use EfficientNetB0 [37], which is a widely used CNN
backbone architecture. The balancing factor λ during Sanchor

calculation is set to 2.0 to ensure that both stability and dis-
tinctiveness contributed to anchor selection. The thresholds for
image feature similarity ϵf and keypoint location ϵk between
candidates are set to 0.3 and 0.1, respectively. We find that
these values are adequate for checking if two instances have
a similar appearance (with feature cosine similarity) or are at
the same location (with Euclidean distance between centre 3D
coordinates) within the 3D model.

Detector and Localiser. We use YOLOv5 [14] object de-
tector for running the anchor detection. We use the YOLOv5m
(medium) version out of several versions that differ in model
size provided by Ultralytics [45]. The detector is trained by
fine-tuning the last three layers of a detector pre-trained on the

Fig. 7. Examples of anchor candidates with varying values for each compo-
nent Sd, Ss and combined score Sanchor . It can be inferred that each score
component Sd and Ss can measure distinctiveness and stability, respectively.

MS COCO [46] object detection dataset. We divide the detec-
tor training set into 0.7:0.3 train-validation split, where the
entire training set consists of at least 20 instances per anchor.
We use SuperPoint [16] feature descriptor, NetVLAD [23]
global image descriptor for the image retrieval step and nearest
neighbour keypoint matching method.

Hardware. All of the procedures, including 3D model
construction using COLMAP [7] [6], anchor extraction, anchor
detection, and query image localisation are performed on a PC
equipped with NVIDIA GeForce RTX 3060 GPU.

B. Anchor Extraction

We conduct a qualitative evaluation of the anchor extraction
scoring method to verify that the algorithm can quantify the
required properties of anchors. Examining the candidates that
scored low on each component Sd and Ss allows us to validate
the scoring metric and extract the candidates that can be relied
upon during the localisation process.

Figure 7 shows example candidates at different score levels
for different components of Sanchor. As shown in the figure,
candidates with overall low scores, both on distinctiveness
and stability, are non-static objects of which several similar-
looking instances exist in the environment (e.g. chairs). Can-
didates scoring low on either components Sd or Ss fall short
on either of the properties. For example, stable but non-
distinct objects such as doors and windows score low on Sd.
Meanwhile, distinct but moving objects (e.g. moving signs and
cleaning robots) score low on Ss. Candidates scoring high on
both components exhibit both distinctiveness and stability and
are thus suitable for localisation. Since a large portion of the
candidates who score high on Sanchor are filtered out because
of the lack of training samples for the detector, the amount of
stable anchors extracted is expected to grow with the amount
of collected data.

Moreover, a new sequence of 61 images was collected for
the Campus dataset after approximately one year (original data
collected during the summer of 2021 and new data collected
during the summer of 2022) to test if the extracted anchors
remained available after a long period. As a result, 43.75%

6
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Fig. 8. Examples of modified/eliminated anchors and their anchor scores from
the Campus dataset, after one year period

TABLE I
HLOC [13], SLD [15], AND ANCHORLOC’S LOCALISATION ACCURACY.
MEAN TRANSLATION ERROR (CM), ROTATION ERROR(◦) AND RECALL

RATE AT 5CM&5◦ WERE RECORDED. THE LOWER THE VALUES WITH (↓),
THE BETTER, AND THE HIGHER THE VALUES WITH (↑), THE BETTER.

ALTHOUGH HLOC PRESENTS A SLIGHT IMPROVEMENT OVER
ANCHORLOC, ANCHORLOC SIGNIFICANTLY OUTPERFORMS SLD BY

CONSIDERING GROUPS OF FEATURES INSTEAD OF SINGLE KEYPOINTS.

Method Cambridge Indoor 6 Campus

cm.(↓)/deg.(↓)/recall@5cm5◦(↑)

HLoc [13] 11.2/5.2/0.46 5.1/7.6/0.8 16.4/3.8/0.91

SLD [15] - 9.8/20.2/0.42 -

AnchorLoc 14.1/5.5/0.39 6.0/9.4/0.71 19.2/4.5/0.78

of all the anchors extracted from the original sequences
were detected in the new sequence. This shows that a large
percentage of anchors cannot be used for localisation after
a long period of time. Additionally, there was no apparent
relationship between their anchor score components Sd, Ss and
their availability in the new sequence. The mean Sd and Ss

for the unavailable anchors were 1.0 and 0.778, respectively,
and the mean Sd and Ss for available anchors were 0.972 and
0.633, respectively. Higher scores thus do not reflect a higher
likelihood of remaining in the environment for a long time.
Figure 8 shows example images and the scores of the anchors
that were modified or eliminated in the environment. This
analysis highlights the need for continuous periodic updates of
the anchor database, possibly by running the anchor extraction
algorithm periodically from newly collected data.

C. Localisation

We compare the localisation performance of HLoc [13],
SLD [15], and AnchorLoc by examining their accuracy and
the computational efficiency on the three datasets mentioned
above. The comparison is conducted on the subset of query
images in which anchors are detected, which amounted to
69.8% for Cambridge, 58.4% for Indoor 6, and 39.5% for our
Campus Dataset. To provide comparable runtime measures, we
set HLoc’s image retrieval step to retrieve a single image. In
practice, a higher number of images is recommended to ensure
accuracy. Similarly, we only consider the anchor detected
with the highest confidence score in AnchorLoc. The anchor
detector, which was trained on the set of database images

TABLE II
RECALL RATES OF HLOC [13], SLD [15] AND ANCHORLOC AT

DIFFERENT THRESHOLDS: 5CM&5◦ , 25CM&10◦ , AND 50CM&20◦ .
ANCHORLOC SIGNIFICANTLY IMPROVES RECALL RATES COMPARED TO

SLD AND COMES CLOSE TO HLOC.

Method Cambridge Indoor 6 Campus

recall@5cm5◦/25cm10◦/50cm20◦(↑)

HLoc [13] .46/.76/.87 .80/.92/.95 .91/.97/.97

SLD [15] - .42/.82/.87 -

AnchorLoc .39/.68/.82 .71/.84/.88 .78/.95/.97

TABLE III
LOCALISATION RUNTIME STATISTICS OF HLOC [13], SLD [15], AND

ANCHORLOC IN MILISECONDS(MS). MEAN, STANDARD
DEVIATION(STD.), TOP 10%, AND 90% FOR EACH METHOD ON EACH

DATASET ARE RECORDED. ANCHORLOC IS FIVE TIMES AS FAST AS HLOC
AND HALVES THE LOCALISATION TIME COMPARED TO SLD, WITH

SIGNIFICANTLY LOWER VARIANCE.

Method Cambridge Indoor 6 Campus

mean/std./10%/90%(↓)

HLoc [13] 58/18/41/73 91/7.8/82/101 94/42/35/157

SLD [15] - 45/9.5/32/59 -

AnchorLoc 18/2.5/14/20 20/1.8/18/23 16/1.6/14/19

which included extracted anchors, was able to achieve an
accuracy of over 0.92 mAP (mean average precision). Even
though the size of the training and validation set was small
(around 20 images per class in total), it was able to achieve
stable performance due to the fine-tuning approach. We report
the localisation accuracy in Table I and the inference time
statistics in Table III.

AnchorLoc shows localisation accuracy comparable to the
accurate method HLoc [13] while significantly outperforming
it in terms of computational efficiency. HLoc [13] shows the
highest level of accuracy as it performs image retrieval over
all database images, performs keypoint matching on all 2D
keypoints on retrieved images, and uses them to perform the
pose estimation. Although HLoc is the most accurate method,
AnchorLoc’s mean estimation error deviates from HLoc’s
error by only 1cm∼3cm and 1◦∼3◦ while reducing runtime
significantly by approximately 70∼80%. SLD [15] does not
directly output the pose estimation from a neural network like
other pose regression-based methods [8]. However, it outputs
the 2D keypoint location through a neural network, which
decreases runtime at the cost of lower accuracy. Meanwhile,
AnchorLoc drastically reduces the runtime for all datasets
without considerably degrading the accuracy, especially on
the Campus dataset, which covers the largest area. As shown
in Table III, AnchorLoc induces a runtime reduction of ap-
proximately 70 to 80% compared to HLoc and around 60%
reduction compared to SLD [15]. We found that detecting
and using stable and distinct object-level anchors instead of
keypoint-level scene landmarks (as in SLD) for localisation
yields higher accuracy at shorter runtime. Additionally, An-
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TABLE IV
STEP-WISE MEAN RUNTIME PER QUERY ON HLOC [13] AND ANCHORLOC
(IN MS), MEASURED ON OUR CAMPUS DATASET. ANCHORLOC ADDS, ON
AVERAGE 8 MS FOR ANCHOR DETECTION, BALANCED BY A SIGNIFICANT

(MIN 10X) DECREASE IN RETRIEVAL, MATCHING, AND PNP TIMES.

Method Detection Retrieval Matching PnP

HLoc [13] - 13 37 43

AnchorLoc 8 1 1.3 5.9

Fig. 9. Recall@5cm5◦/Mean runtime (seconds) of HLoc [13], SLD [15] and
AnchorLoc over all datasets. Error bars show the standard deviation. Larger
values indicate higher accuracy relative to localisation runtime. AnchorLoc is
more efficient, exhibiting higher accuracy over computational cost.

chorLoc is the only method out of the three tested methods
to show fast performance at around 50 frames-per-second
(FPS), which could be advantageous for augmented reality
applications in overlaying virtual objects at a smooth frame
rate while tracking the device within the environment.

To further illustrate the efficiency of our method, we show
the recall rate at 5cm5◦ over the mean runtime (in seconds)
of each method in Figure 9, which can be interpreted as
the ratio between the level of accuracy and computation
cost. AnchorLoc shows the highest level of accuracy rela-
tive to the computational cost over all datasets at different
scales. Additionally, AnchorLoc shows a large reduction in
the runtime variance in all cases. According to Table III, the
standard deviations of runtime are significantly reduced by
approximately 80% to 95% over all datasets. This shows that
our method is not only able to reduce the computational load
but also allows stable and consistent performance compared
to previous methods, which is another essential aspect for
deploying real-time localisation systems.

We compare the runtime taken by each component in the
hierarchical localisation pipeline with HLoc [13] to show
that AnchorLoc effectively reduces the search space and
increases efficiency. Table IV shows the mean runtime taken
by the detection, image retrieval, keypoint matching, and PnP
solver [42] of the two methods on our large-scale indoor
Campus Dataset. Although there is additional overhead for
anchor detection in AnchorLoc, the performance gain in the
rest of the pipeline from the reduced keypoint search space
possible by the anchor detection drastically outweighs this
factor. When an anchor is detected, image retrieval is only
performed on the small subset of database images containing
the anchor and the keypoint matching. The PnP solver only

Fig. 10. Example visualisations of keypoint matching between a query image
(left) and database image(right) in AnchorLoc. Using the information from the
detected anchor, AnchorLoc can boost the localisation efficiency by limiting
the search space during image retrieval and reducing the number of processed
keypoints during pose estimation.

has to process the keypoints within the detection bounding
box, significantly boosting computational efficiency. Compar-
atively, we configured HLoc to retrieve a single image during
the image retrieval phase. This phase should return several
images in larger-scale or low-feature environments to minimise
error. The rest of the pipeline would then process each image,
increasing the runtime by a multiplicative factor.

While AnchorLoc’s main advantage is the increased effi-
ciency in the localisation pipeline, its ability to retain a similar
level of accuracy as the original hierarchical localisation meth-
ods is vital. This ability is assumed to be primarily due to the
anchor scoring mechanism, as the stability and distinctiveness
criteria aim to ensure the accuracy of the retrieved image
and the keypoint matches. During retrieval and matching, the
localisation algorithm is designed to focus on a small portion
of the visual information. We also emphasise that anchor-based
localisation is highly scalable, as the runtime is independent of
the global dataset size once we reduce the search space using
the detected anchors. This portion contains the most useful
information for localisation thanks to its stable and distinct
properties. The resource-intensive anchor extraction from the
dataset is performed in advance on the server side, allowing
accurate and efficient localisation.

VI. RESOURCE-CONSTRAINED SETTING

Mobile Augmented Reality often relies on devices with lim-
ited capabilities. Therefore, we perform additional experiments
in a resource-constrained setting to confirm AnchorLoc’s im-
provements in computational efficiency for realistic deploy-
ment scenarios. Experiments were carried out on a mobile
single-board computer with ARM architecture equipped with
an 8-core CPU with 2.4 gigahertz processing speed.

Table V shows the runtime statistics of each method on
all three datasets under the resource-constrained setting. The
accuracy of each method remained the same as in the original
experiment conditions since the change in hardware does not
induce any change in algorithm output. As shown in the
table, the mean runtime is reduced by around 60% on all
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TABLE V
LOCALISATION RUNTIME STATISTICS OF HLOC [13], SLD [15], AND

ANCHORLOC IN MILISECONDS(MS) IN RESOURCE-CONSTRAINED
SETTING. MEAN, STANDARD DEVIATION(STD.), TOP 10% AND 90% FOR

EACH METHOD ON EACH DATASET ARE RECORDED.

Method Cambridge Indoor 6 Campus

mean/std./10%/90%(↓)

HLoc [13] 197/79/93/271 187/68/101/258 163/71/85/241

SLD [15] - 119/46/72/165 -

AnchorLoc 75/19/56/106 71/21/47/96 67/23/31/102

three datasets compared to HLoc [13] and 40% compared to
SLD [15]. Moreover, the standard deviations of the runtime
distribution for each dataset were reduced by around 70 to 80%
compared to previous methods, which shows that AnchorLoc
shows similar improvements in computational efficiency on
more realistic hardware settings.

VII. DISCUSSION

Summary of results: Our anchor-based localisation
method shows superior computational efficiency (up to 70-
80% faster) with only marginal increases in pose estimation
errors (1-3 cm). AnchorLoc is a more practical method for
pervasive AR applications, showing real-time performance at
large-scale even on resource-constrained mobile devices.

Dynamic Environments: Realistic localisation scenarios
present unstable visual elements that change over time, such
as moving pedestrians, vehicles, or furniture. AnchorLoc’s
automatically identifies and focuses on stable visual elements
in the scene. Its automated anchor extraction pipeline does not
depend on manual labelling, although it also allows manually
extracted anchors. It may adapt to scene changes over time,
as shown in Figure 8, by running periodically on newly
collected data. These properties make AnchorLoc an efficient
localisation method for large-scale AR platforms.

Long-term Anchor Persistence: One year after the initial
data collection, we collected another sequence of images
covering all the previously detected anchors in the dataset.
43.75% of the anchors were detected. The anchors that were
not detected were either (1) posters and signs that got replaced
over time; (2) large pieces of equipment (e.g., vending ma-
chines) that moved around campus; (3) existing anchors that
got covered, either temporarily or permanently. This finding
highlights the need for semantic classification of anchors to
remove objects likely to move over a longer period and the
need for periodic updates of the anchor database. In a real-life
scenario, users would use anchors to relocalise the experience
periodically. It would thus be easy to detect missing anchors
and leverage users’ experiences to collect more data.

Limitations: A significant portion of the query image
set did not contain anchors, which could potentially lead
to inconsistencies in localisation speed. On the other hand,
environments containing many objects (e.g. busy city centres)
could make the anchor extraction costly since the algorithm’s

computational complexity is quadratic to the number of can-
didates. Semantic segmentation may be used to provide more
contextual information to be used during the anchor extrac-
tion phase. Additionally, this work only considers a single
anchor on the frame. Considering multiple anchors on a single
frame could further improve the localisation accuracy while
introducing computational overhead. Finally, evaluating the
method under a more realistic localisation scenario, such as in
a large-scale AR platform, would be necessary to bridge the
gap between experimental settings and real-world applications.

Towards pervasive AR: This work aims to enable AR
indoors and outdoors at a vast (city) scale. Current approaches
are computationally intensive and require large amounts of
storage. As such, only major industry players can partake in
pervasive AR. Currently, only Google Geospatial API1 and
Niantic Lightship2 offer such capabilities. However, Niantic
only focuses on select environments, while Google’s visual
positioning system requires immense computation and storage
capabilities to handle the scale of its data. Academically,
solutions such as HLoc offer good accuracy, but performing
image retrieval over larger datasets requires selecting multiple
candidates to minimise error, significantly increasing runtime.
Anchorloc considers that most visual data collected in con-
tinuous sequences is not adapted to visual positioning (e.g.,
featureless environments, repetitive textures) and focuses on
the stable, feature-rich areas. Besides accelerating localisation,
it also ensures that localisation is performed over images
that would yield high accuracy thanks to the uniqueness and
density of the features. Anchors are detected with lightweight
ML models such as YOLO, and the search is performed
on a minimal-size point cloud. This allows mapping very
large-scale environments with minimal data and enables on-
device positioning, paving the way for city-scale pervasive AR
scenarios such as augmented tourism, vehicular AR head-up
displays, and AR navigation applications.

VIII. CONCLUSION

This work introduces AnchorLoc, a framework for ex-
tracting and integrating anchors into visual localisation for
efficiency and scalability. We provide an automated pipeline
for extracting anchors, which are stable and distinct visual el-
ements that can be used for localisation. AnchorLoc leverages
anchor detection to improve the computational efficiency of hi-
erarchical localisation methods. We also introduce a new large-
scale, indoor campus visual localisation dataset. Experiments
on representative datasets prove our method’s efficacy for low-
latency localisation on environments of different scales.
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