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Abstract—Modern real-time applications widely embed com-
pute intense neural algorithms at their core. Current solutions
to support such algorithms either deploy highly-optimized Deep
Neural Networks at mobile devices or offload the execution
of possibly larger higher-performance neural models to edge
servers. While the former solution typically maps to higher en-
ergy consumption and lower performance, the latter necessitates
the low-latency wireless transfer of high volumes of data. Time-
varying variables describing the state of these systems, such as
connection quality and system load, determine the optimality
of the different computing configurations in terms of energy
consumption, task performance, and latency. Herein, we propose
Furcifer, a framework capable of dynamically adapting the cloud
continuum computing configuration in response to the perceived
state of the system. OQur container-based approach incorporates
low-complexity predictors that generalize well across operating
environments. In addition, we develop a highly optimized split
Deep Neural Network model, which achieves in-model supervised
compression and enhances task offloading. Experimental results
for object detection across diverse conditions, environments,
and wireless technologies, show Furcifer’s remarkable outcomes,
including a 2x energy reduction, 30% higher mean Average
Precision score than pure local computing, and a notable three-
fold increase in frame per second rate compared to static
offloading.

Index Terms—Edge Computing, Machine Learning, Object
Detection, Mobile agents, Image compression

I. INTRODUCTION

The increasing adoption of Machine Learning (ML) so-
lutions in a broad range of real-world application scenarios
has highlighted the need for system architectures with high
flexibility and adaptability. However, the usability of ML al-
gorithms in practical settings is often hampered by computing
and communication limitations not considered during their
development and evaluation stages. Challenges include con-
strained computing capabilities and energy budget of mobile
devices, as well as communication channel capacity. Local
Computing (LC) and Edge Computing (EC) stand as the
primary strategies for tackling the broad range of real-world
heterogeneous tasks centered on the execution of complex
data analysis and decision making algorithms. On the one
hand, LC, that is, the execution of the ML algorithm on-
board a mobile device, aims at the optimal interplay between
software applications and hardware components to efficiently
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Fig. 1. Representation of computation distribution between Mobile Device
(M D) and Edge Server (ES) for Local, Split, and Edge computing scenarios.

harness available onboard resources. This near-deterministic
computing strategy comes at the price of reduced lifetime
and limited computing capabilities. On the other hand, EC,
where the ML tasks are offloaded to a compute-capable device
positioned at the network edge, leverages high-performance
communication and computing technologies to effectively
support real-time applications. While EC' promises higher
computational capabilities and lower energy consumption to
pervasive mobile systems, it requires a stable wireless link that,
given the volatile nature of wireless channels, is not available
consistently.

Recently, a third paradigm - Split Computing (SC'), where
sections of ML models optimized to facilitate offloading are
allocated to the mobile device and edge server - emerged as a
promising alternative to EC' and LC' (see Figure 1). Indeed,
the most advanced SC frameworks, where specialized models
embed neural encoder/decoder-like structures, result in mini-
mal computing load to the mobile device, while considerably
reducing network usage [1].

Despite the substantial progress made in all the computing
paradigms pursued by academic and industrial efforts, none
of aforementioned computing strategies can be deemed as
universal solution in every scenario. We contend that the
volatility and time-varying nature of a multitude of rele-
vant parameters and state variables (e.g., channel quality, or
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network and server load) make online adaptation not just
desirable to achieve optimal performance, but also necessary in
practical deployments. However, adaptation of the computing
configuration is explored only in academic and theory-driven
investigations, which often overlook critical characteristics
and issues emerging in real-world systems and deployments
[2]-[4]. Moreover, despite its potential to become a critical
computing configuration in many operational settings and
system states, SC' has yet to be evaluated beyond purely
academic frameworks, making its ability to contend with EC'
and LC solutions unclear.

In response to these open technical challenges and deficien-
cies, we present Furcifer, an innovative middleware framework
specifically designed to provide seamless adaptation of the
computing modality in realistic application environments. Fur-
cifer transparently monitors the state of the underlying system,
evaluating at runtime the feasibility of FC, LC, and SC
configurations in highly dynamic environments, and switch
between them. The core of Furcifer is a new containerized
approach that can effectively support the dynamic transition
between EC, LC and SC. The proposed framework reduces
context switch latency between different computing modalities
— less than 2ms — by using storage as an additional and
inexpensive resource.

In this article we evaluate Furcifer’s applicability in Object
Detection (OD); however, it’s important to note that the
framework is designed to be deployed effortlessly within the
Cloud Continuum. Indeed, the methodology we introduced for
constrained devices seamlessly extends to cloud solutions by
simply plugging in containers suitable for cloud architectures
without changing the underlying architecture. Our assessment
involves an extensive measurement campaign encompassing
more than 250 indoor and outdoor experiments, featuring
wireless technologies, such as the IEEE 802.11n and 802.11ac
Wi-Fi protocols. In our tests, Furcifer achieves an impressive
2x reduction in energy consumption and an additional 30%
mean Average Precision score compared to LC, while also
providing a remarkable threefold frame per second rate
increase compared to E£'C. The main novel contributions of
the paper are as follows:

o Furcifer, an innovative middleware that enables real-time
monitoring of cloud continuum resources;

o A low-overhead container-enabled adaptation which al-
lows the switch to a different model with minimal latency
and negligible additional bandwidth usage;

e The first SC encoder-decoder model competitive against
highly optimized state-of-the-art OD models used in
practical applications;

« A dataset (which we pledge to release) consisting of more
than 250 indoor and outdoor experiments, encompassing
diverse scenarios with mobile devices operating under a
broad range of channel conditions, wireless technologies
and system load levels;

o A low complexity policy management module, trained on
the dataset and experiments above, capable of optimizing
the computing configurations, based on target power
consumption, OD performance, and overall latency.

II. RELATED WORK

Furcifer builds on top of prior work in (a) Edge Computing
context adaptation, (b) Image Compression and (c) Energy
Consumption on Embedded Systems.

A. Real-World Context Adaptation in Edge Computing

Dynamic offloading of computational load to edge servers
is essential to support resource-intensive applications on con-
strained mobile devices while meeting demanding QoS re-
quirements [5]. Despite substantial advances in self-adaptive
offloading strategies, most state-of-the-art solutions have
mainly tackled this optimization problem from a theoretical
perspective [6], [7]. Recent studies have investigated the
benefits of context-aware adaptation for specific tasks such
as 4k mobile Augmented Reality (AR) [8] and mobile video
streaming [9] providing an in depth overview of the set of
optimization operations required to effectively deploy self-
adaptive policy managers in real-world field experiments.
Progressive adaptation to different OD contexts using synthetic
data [10] or uncertainty-aware domain adaptation networks
[11] proved to be a promising direction when implementing an
ML-based solution in real-world scenarios. Furthermore, em-
ploying strategies such as the random exploration of optimal
scaling factors [12] can help alleviate the negative effects of
source domain bias. However, these approaches often fail to
consider critical system metrics such as energy consumption
and network occupancy. In stark contrast with the current
state of the art, Furcifer takes a comprehensive approach by
tackling both system related and Computer Vision challenges,
demonstrating the practical deployability of a low-complexity
policy managers in constrained scenarios.

B. Image compression and Object Detection

Many neural models for computer vision, and OD in par-
ticular, are commonly trained and evaluated using state-of-
the-art datasets such as COCO2017 [13] and Pascal VOC
[14]. However, these evaluations often overlook the significant
performance degradation caused by image compression [15],
[16], which is inevitable in practical £C' systems. In partic-
ular, widespread image compression techniques are designed
for human perception rather than for image analysis. As a
consequence, high performance requires the transfer of large
volumes of data over capacity-constrained channels. To ad-
dress this issue, SC' (also known as supervised compression in
some contexts) [17], [18] has recently emerged as a promising
alternative to achieve state-of-the-art performance in computer
vision tasks while effectively reducing bandwidth usage. The
idea is to incorporate encoder/decoder-like structures within
the ML models themselves, and use specialized training tech-
niques to train task-oriented compressed representations [19],
[20]. Knowledge Distillation [21], [22] is one of the tools used
to maximize the effectiveness of SC' frameworks.

Although the academic literature has demonstrated the po-
tential of SC in popular datasets, an evaluation considering
a complete computer vision pipeline is missing. Our work
addresses this gap by illustrating how - often overlooked -
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components such as preprocessing, acquisition, and timing
characteristics significantly influence the overall performance
of a computing configuration. Additionally, we emphasize
the importance of proper model optimization, noting that
SC is frequently compared to non-quantized models rarely
used in practical deployments. Our work aims to evaluate the
resilience of SC' frameworks to quantization and to evaluate
their performance compared to optimally designed models for
embedded computers.

C. Energy Consumption on Embedded Systems

While much of the current ML-centered research is pri-
marily focused on achieving the best task performance in the
absence of resource restrictions, it is imperative to acknowl-
edge energy consumption as a pivotal metric when considering
mobile deployments. In recent years, initiatives such as The
Low Power Image Recognition Challenge (LPIRC) [23] and
a burgeoning energy-conscious perspective [24], [25] have
emerged, underscoring a deliberate shift towards evaluating
energy consumption. This evolving approach aligns with a
sustainable trajectory aimed at achieving Green Al [26],
standing in stark contrast to the opposite trend of Red Al

In the domain of real-time computer vision, energy con-
sumption is not solely determined by the number of Floating
Point Operations (FLOPs) or Multiply-Accumulate (MAC) op-
erations indicative of the model’s complexity. Indeed, energy
consumption is also proportional to the number of frame per
seconds (F'PS) processed by the system [27], [28]. Further-
more, an increase in image resolution results in a significantly
expanded tensor space representation within the hardware
accelerator. This expansion necessitates the activation of a
larger portion of the hardware board to harness the advantages
of parallelized convolutional operations [29]. Although in-
depth studies address energy optimization from an embedded
system perspective [30]-[32], current state of the art falls
short of evaluating this aspect from a holistic cloud continuum
perspective. Furcifer aims to strike a balance between resource
efficiency and predictive precision, spanning from the edge to
the cloud, and catering to the comprehensive energy optimiza-
tion needs of modern mobile computing. By minimizing the
energy consumption of mobile devices based on the desired
mean Average Precision (mAP) score F'PS rate, our solution
represents a leap forward in realizing practical ubiquitous
computer vision applications.

III. PROBLEM STATEMENT AND PRELIMINARIES

First, we discuss the application setting we target in this
work, where a cluster of mobile devices (M D) and an edge
server (ES) collaboratively perform OD on the streams of
images generated by the M Ds. In the following, we list the
main computing strategies to achieve an optimal operating
point in terms of energy consumption, OD performance, and
frame rate.

o Edge Computing: The execution of the task on the
edge server allows the use of high-performance models
(e.g., large non-quantized models). However, the limited
computing capabilities of £.Ss compared to cloud servers

means that the server may struggle to serve a large
number of task streams. Moreover, the need to transfer
the input data to £S means that robust and high-capacity
wireless channels are needed.

o Local Computing: In settings where the task complexity
is low enough to match the capabilities of the mobile
device, then local execution of the algorithm is a viable
option. A trade-off is struck between task performance,
power consumption and frame rate. Importantly, LC
performance is not dependent on the state of the wireless
channel connecting the M D to the ES, or the network
and server load. In this context, quantization assumes
a pivotal role in reducing execution time and energy
consumption and enabling the use of better performing
models whose use would otherwise be impractical on
resource-constrained devices with limited computational
capabilities. However, LC implies high energy usage,
which leads to a reduced battery lifespan.

o Split (collaborative) Computing - SC: In SC, a subset
of operations that would be executed on the ES is
allocated to the mobile device. This subset often includes
pre-processing operations, such as JPEG encoding and
partial model inference altered to embed neural super-
vised encoding [33]. The objective is to decrease the
amount of data to be transported over the wireless channel
while minimizing the involvement of M D and possibly
also decreasing the server load. This computing modality
proves advantageous in settings where the communication
channel’s reliability is compromised, bandwidth demands
exceed channel capacity or computing demands exceed
server capacity. SC is specifically designed to address
this scenario by mitigating both channel usage and com-
putation burden on the ES.

Computing strategies comparison: The most popular metric
used to evaluate OD is mean Average Precision (mAP), which
combines precision and recall values based on Intersection
over Union (IoU) scores across various levels of confidence
thresholds. Typically, mAP scores are obtained by testing
the algorithm on benchmark datasets such as COCO2017.
However, when deploying an OD engine in a real-world
setting, various factors such as camera resolution or scaling
factor alterations come into play to determine the performance
perceived by the application. Additional factors such as model
quantization and image compression also play a significant
role. With these in mind, we conduct an extensive evaluation
of EC and LC, as well as Furcifer’s SC' engine. As M D,
we select a Jetson Nano Dev Kit device, connected to a
Jetson AGX Orin Dev Kit that acts as ES. At the ES,
we deploy a modified version of Faster R-CNN [34] with
Res50 backbone as a feature extractor testing various JPEG
compression rates: 0%, 50%, and 70%. We also explore
high-frame-rate alternatives for LC'. Specifically, we select
a quantized FP16 version of YOLOVS [35] and SSD300, a
customized adaptation of the Single Shot MultiBox Detector
(SSD) [36] developed by NVIDIA.

In our exploration of SC, we develop a specialized encoder-
decoder architecture trained using supervised compression and
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Fig. 2. Best performing computing modality and associated MD’s power
consumption as a function of signal strength and number of connected users.

OD Computing Configuration mAP FPS+ std FPS,in  FPSpaz
EC_JPEG_0 37.051 329 + 1.264 1.2 5.52
EC_JPEG_50 31.797  6.46 £ 3.007 1.89 10.01
EC_JPEG_70 29.476  6.66 £ 3.058 2.01 10.32

SC_FURCIFER 25.964 8.38 £+ 1.992 4.96 11.72
LC_YOLOVS5(F P16) 23.403  13.46 + 0.261 11.89 13.89
LC_SSD300(F' Pi6) 23.201  28.45 + 0.635 27.83 33.12

TABLE 1

MEAN AVERAGE PRECISION AND FPS STATISTICS DEPENDING ON OD
COMPUTING CONFIGURATION

Faster R-CNN as a teacher model. Our design is based on the
model proposed in [37]. However, we optimized the original
model by quantizing the encoder to FP16 and running it with
an optimized inference engine. In addition, we fine-tuned the
student model in order to match the camera resolution with
the feature extractor upscaling factor. Further details about the
distillation process are in Section IV-E.

The data reported in Figure 2 and Table I provides a com-
parison of the frame per second (F'P.S) and mAP obtained
by each computing modality and model, whereas the figure
shows the computing modality achieving the best F'P.S rate
and the associated power consumption (MD only) as a function
of signal strength (MD to ES channel) and the number of con-
nected users. The results show that the best m AP performance
is obtained using FC' without JPEG compression - that is, the
largest model running without image compression. Conversely,
the maximum frame rate is achieved by a quantized version of
the original model deployed on the M D. The figure illustrates
how the optimal configuration is a function of the state of the
channel and how different options result in a different amount
of power spent by the mobile device. It should be pointed that
this refers to the power consumed by M D and it does not take
into account the overall total energy consumed by the whole
system. As demonstrated later, Furcifer outperforms EC' in
terms of speed by achieving up to twice the F'PS rate, all
while achieving a higher m AP score in low-channel quality
scenarios compared to the LC' models.

IV. FURCIFER: SYSTEM DESIGN AND
IMPLEMENTATION

The quantitative indicators presented in the previous section
emphasize how there is no absolute winner among EC, SC,
and LC even when considering a specific task, computing
platforms, and communication technology. Instead, the — time
varying — state of the system, which is influenced by mobility
and load dynamics, determines the best computing configura-
tion. However, changing the computing modality in real-world
deployments is technically non-trivial. Furcifer realizes an
adaptation engine composed of highly effective containerized
models whose activation is determined by a control module
informed by comprehensive system monitoring. While every
element within the system holds a crucial role to enable
adaptation to context, the container-based Service-Oriented
Architecture (SOA) nature of Furcifer enables the independent
deployment of each component. Furcifer tackles this obstacle
by encapsulating each computing strategy within a container.
Such containerization bundles the code and its dependencies,
ensuring the ML application runs swiftly and reliably across
diverse computing environments and facilitating a seamless
transition between running ML models based on specific con-
text characteristics. We have implemented Furcifer approach
to Object Detection (OD) models as an ML task that is
representative of real-time applications. Within this section,
we provide an in-depth discussion of the main features of
each component while graphically representing the overall
architecture and component unit in Figures 4 and 3.

A. Energon: a Transparent Energy Monitoring Module

We first describe the system monitoring module - a manda-
tory component as it informs Furcifer’s decision-making pro-
cess about the current state of the system. Energon is devel-
oped from scratch in order to be compliant with Prometeus
[38], a well-established real time metric standard. Energon
collects system metrics from connected M Ds by unobtrusively
extracting data from the registries of the targeted operating
system with minimal overhead to the monitored device and
without the need to implement modifications to the applica-
tion’s underlying logic.

Energon focuses primarily on energy consumption and
resource utilization in M Ds, while also providing insights
into additional metrics, including network quality, packet
transmission and drop rates, CPU usage for individual cores,
storage utilization, GPU usage percentage, and temperature
measurements from various regions of the board. Scraped
metrics are made available through an HTTP endpoint that
can be queried on demand by the orchestrator.

B. From the Cloud the Edge: On-Demand Image Pulling

Before Furcifer, the adoption of containerized models on
mobile devices was limited by the lack of hardware accel-
eration support and excessive computational power required.
Our middleware integrates GPU-enabled capabilities offered
by the original Docker runtime in a lightweight version of the
renowned container framework where unused modules were
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Fig. 4. Furcifer: Architecture and Settings.

removed. Furcifer provides a specialized container registry
specifically designed for image compression and storage.
This registry stores well-tailored images optimized for each
compatible device, which are cached for future use based on
the specific task the device is assigned. For each device type,
a subset of images shares identical interfaces with the oper-
ating system hypervisor. However, these images differ at the
application layer and user library level, adapting to the specific
task to be executed and the corresponding dependencies that
are necessary.

This shift of paradigm from the cloud to the edge empowers
proactive mechanisms that enable seamless adjustments in
response to evolving context requirements. We choose to apply
containerization as a practical way to guarantee flexibility and
fast reactiveness of the framework to future environment states.
Our evaluation of the size of resulting container images reveals
that less than 1% of the image comprises application-level
files. This efficient design enables the download of only the
last layer of the image, which has the same footprint size
of the model itself. This approach minimizes network usage,
since the model would anyway need to be transferred no matter
whether a containerized approach is used or not.

Figure 5 shows the memory footprint of Furcifer container
images in the LC, SC and EC configurations. Notably, the
memory requirements for hardware acceleration dependencies
at both the platform and user library levels are about four times
more extensive for LC and SC compared to EC. Remarkably,
the contribution of the application layer remains minimal
compared to the other components, reinforcing the viability
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Platform @ User libraries @ Al-application

LC  4070MB 3020MB 20MB
57.24% 42.48% 0.28%

gC  4070MB 3020MB 25MB
57.38% 42158% 0.04%
770MB 500MB 0.28MB

EC 60.63% 3980 0.01%

Fig. 5. Furcifer’s GPU enabled containers footprint for LC, SC and EC
OD computing configurations.

of switching between containers on demand. This is achieved
by pulling only the necessary components, specifically the last
layer of the container image, thereby reducing unnecessary
network usage and resource consumption.

C. Communication Interface and Protocol

Deployed containerized models corresponds to a distinct
and uniquely identified end point on the M D. Those mi-
croservices interact with the central orchestrator through a
REST API, facilitating seamless communication and interac-
tion while capitalizing on the advantages of minimal com-
munication overhead. It continuously monitors potential new
connections and, in the event of a connection loss, takes in-
formed countermeasures to address the situation by switching
to a local computing strategy. Furcifer’s REST APIs operate on
a request-response TCP-based model, enabling the framework
to discern round-trip packet latencies. This functionality allows
the introduction of well-defined rules for filtering out requests
characterized by excessive communication delays. This mech-
anism ensures that the framework remains responsive and
efficient, even in scenarios where the network conditions might
fluctuate. Exchanged messages are defined as follows:

o keep_alive: This message is sent periodically using a
polling mechanism to ascertain the presence of mobile
devices within the same network.

start/stop_OD: This message instructs the Mobile Device
MD to initiate or terminate an Object Detection task.
When initiating a task, the message also specifies the
preferred computing strategy among LC, SC, and EC.
set_target_frame_rate: This command sets the desired
FPS rate for camera sampling based on dynamic re-
quirements defined at the application level. Recogniz-
ing the direct correlation between higher F'PS rates
and increased power consumption, Furcifer intelligently
conserves energy and network resources when higher
frequency camera sampling is unnecessary, e.g., Vehicle-
to-Vehicle (V2V) cameras in low-traffic environments
[39D).

set_compression_rate: If an £ C configuration is used,
the M D can opt to compress captured images before
transmitting them to the ES for final detection. This mes-
sage specifies the desired compression rate, controlling
the balance between reduced compression for improved
mAP score.
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D. Orchestrator

An orchestrator constitutes a software mechanism designed
to streamline the deployment, management, scaling, and net-
working of containers in a computing environment. The
Furcifer’s orchestrator is a customized open-source version
of the Docker container’s platform. Its design is tailored to
enable the deployment of a singular container per offloading
strategy across any MD connected with the ES. This strategic
deployment facilitates the isolation of containerized machine
learning model implementations.

Furthermore, the orchestrator’s scaling and management
protocols are controlled by the pareidolia policy. This policy
evaluates the energy consumption metrics of the MD, as
well as an array of context-sensitive metrics. This evaluation
enables the orchestrator to dynamically adjust its operational
strategy, seamlessly transitioning between two or more con-
tainers to optimize performance and resource utilization.

E. Furcifer’s SC Engine

Furcifer introduces a new SC engine tailored for resource-
constrained devices, marking a significant advancement in
this real-world domain. Leveraging Faster R-CNN as the
teacher model, we use a modified version of the knowledge
distillation process adopted in SC2 Benchmark [37] to design
a compact encoder optimized for constrained devices. This
encoder serves a dual purpose: minimizing channel occupancy
and effectively distributing computation load between mobile
devices and the edge server. Differently from the original
model described in [37] we optimized each tensor operation
to exploit the parallel execution on the GPU. We transform
the canonical matrix operations into cuDNN tensor operations
[40] and run the model by building a TensorRT engine [40]
for high performance inference optimization. In the fine-
tuning process, we employ preprocessing image upscaling
transformation of 400 pixels, which is smaller than that of
the original model, with a minimum height of 800 pixels.
This resolution adjustment is implemented to facilitate quicker
inference on resource-constrained devices.

The optimized encoder heavily relies on quantization and
channel compression to reduce execution time as much as
possible. To enhance data compression, we strategically place
a one-channel bottleneck in the initial layers of the feature
extraction segment of the network. This choice leads to
further data reduction, increasing the efficiency of the whole
process. Additionally, we incorporate INT8 quantization at
the end of the encoder. This quantization approach optimizes
the representation of the data, contributing to both improved
data compression and streamlined computation. The dynamic
nature of the system is upheld by calculating the scaling factor
and zero point on a per-image basis as they are processed.
These values are then communicated to the decoder located at
the £'S, along with the resulting INTS8 tensor from the encoder
inference process.

The incorporation of INT8 quantization and dequantization
for the inference tensor on the M D minimizes the influence
of weight quantization within the encoder engine, which
transitions from FP32 to FP16. We confirm the negligible

impact on mAP score testing Furcifer’s SC engine on the
COCO02017 dataset, obtaining 25.966 and 25.964 as mAP
scores for FP32 and FP16, respectively. Thus, the adoption
of an FP16 quantized encoder on the mobile device delivers
a nearly twofold increase in processing speed compared to
its FP32 counterpart, while preserving about the same mAP
score. This finding underscores the additional advantage of
applying quantization to SC' encoders, which, unlike their
LC' counterparts, are already quantizing the final encoding
result to minimize channel occupancy. As a result, they are
less susceptible to mAP score reduction due to quantization.
We remark how this optimization makes SC a competitive
option against optimized models for embedded devices, as
demonstrated by our results.

E Camera Sampling Module

The Camera Sampling Module (C'S M) performs the capture
of frames from accessible cameras, integrating essential drivers
to ensure optimal performance with adaptability to various
camera models. Additionally, this module offers to the user the
ability to set precise directives for the desired camera sampling
rate and image resolution [41]. Such dynamic adjustments
align with distinct embedded OD models stored within the
container registry located on the ES. This synergy between
the Camera Sampling Module and the containerized models
underscores Furcifer’s ability to match detection demands with
resource availability, enabling seamless contextual adaptation
and optimized performance in a wide range of different use
cases. Furthermore, this module assumes responsibility for
image compression prior to transmission to the £S when EC
is selected as computing configuration.

G. Pareidolia:
Adaptation

Low-Complexity Similarity-Based Context

Pareidolia, a concept rooted in human perception, reflects
the inclination to perceive distinct, often meaningful shapes
or images within random or ambiguous visual patterns. It
manifests as a natural cognitive process, wherein the brain
attempts to link novel ideas with existing concepts. Leveraging
already solved tasks, Furcifer leverages “pareidolia” as a con-
text adaptation approach. Each participating M D maintains a
record of previously completed tasks. This historical context
empowers the node to discern which computing strategy aligns
best with the current system state by identifying analogous
past scenarios. When a sufficiently similar context is detected,
the E'S intervention may not be required. Conversely, if an
analogous context is not found, pertinent task details are
shared with the ES to collaboratively determine the optimal
model and computing configuration (EC, LC or SC) that
best matches the current system state. The Pareidolic Policy
Manager (PPM), as defined, facilitates low-complexity trend
forecasting [42]-[44]. It has demonstrated its effectiveness
across a diverse range of real-world scenarios, operating
seamlessly without simplifications while reducing the minimal
additional burden on already limited computational capabil-
ities. As a result of the interaction between the increasing
number of concurrent clients and the variability of network
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conditions, PP M forecasts the expected number of F'P.S that
the mobile device will achieve when employing each con-
sidered computing configuration. This predictive functionality
enables PP M to anticipate the impact of each strategy choice
on F'PS and tailor the decision accordingly. PP M forecasting
capability comes from a set of predictors which based on the
current metrics collected by Energon are capable of determine
the resulting F'PS rate the framework will achieve as a
consequence of choosing a specific computing configuration.

V. EXPERIMENTAL EVALUATION

In this section, we present and report the result of the
experiments carried out using the Furcifer framework. These
experiments report relevant performance metrics on a broad
range of states and settings of the targeted deployment environ-
ment, including outdoor and indoor ones covered with IEEE
802.11n and 802.11ac connectivity. Through this extensive set
of experiments, we aim to assess the ability of Furcifer to
dynamically adapt the cloud continuum configuration against
system state dynamics. The dataset we collect comprises over
250 distinct combinations of channel conditions (expressed
as signal strength) and number of concurrent client con-
nections. Although indoor and outdoor experiments exhibit
similar trends, indoor scenarios tend to be characterized by a
higher degree of unpredictability, which is primarily due to the
presence of obstacles that complicate signal propagation. As a
result, the overall channel quality is adversely affected, leading
to more variable and less consistent performance outcomes.

A. IEEE 802.11n Experiments

First, we focus on the widely used Wi-Fi 801.11n standard.
Our experimental setup features a Jetson Nano DevKit as the
mobile device equipped with a 640x480px USB webcam. In
indoor scenarios, we orchestrated the movement of the device
along a designated path spanning approximately 20 meters.
In outdoor scenarios, the path extends over a distance of 50
meters. This deliberate variation allowed us to replicate a
spectrum of signal strengths and network dynamics, capturing
the intricacies of both indoor environments and outdoor set-
tings. For each experimental run, we meticulously examine the
system scalability across different user scenarios. Specifically,
we investigate the performance of the system, as the number
of clients varies between 1 and 20.

Figures 6a and 6b depict the F'PS and error percentage
metrics for SC' and EC with JPEG compression gain 0, 50
and 70% as a function of distance with a single connected
user. Within the indoor experiment settings (Figure 6a), there
is a striking similarity in the average F'PS achieved by EC
and SC, except in the scenario without image compression.
Conversely, in the outdoor environment (Figure 6b), SC' takes
advantage of the improved channel conditions compared to
the indoor setting and achieves up to 2 additional F'PS.
Importantly, it is worth noting that SC' not only excels in
F PS but also achieves a higher mAP score compared to LC),
showcasing its suitability in terms of both task performance
and frame processing speed.
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Fig. 6. IEEE 802.11n experiments: with one connected client (a) indoors

and (b) outdoors, and twenty connected clients (c) indoors and (d) outdoors.
Performance metrics - F'P.S, fail percentage - as a function of distance for
SC and EC with 0%, 50%, and 70% JPEG compression gains. The lines in
the plots correspond to average metrics, while the shading represents variance.

Figures 6¢ and 6d show performance metrics as the number
of clients connected to ES varies. Several notable trends
emerge from this analysis. First, we observe an interesting
pattern regarding the impact of image compression techniques
as the number of concurrent clients increases. The failure
rates associated with JPEG are dramatically larger compared
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compression gain 0, 50 and 70%. . The lines in the plots correspond to average
metrics, while the shade is the variance.

to SC, reaching up to 100% failure rate in some measure-
ments. This result underscores the perils of relying solely on
image compression when dealing with a larger number of
clients, highlighting the potential limitations of this approach
in dynamic and demanding network/server conditions. On the
contrary, SC' achieves almost a steady 0% failure rate due to
the small amount of network and server resources used by this
configuration. The resulting improved resilience of Furcifer
underlines the effectiveness of its context-aware approach,
which enables SC' to consistently outperform EC in the range
of tested network conditions.

B. IEEE 802.11ac Experiments

The overhead in a wireless communication channel fluctu-
ates based on the technology employed, thereby influencing
the trade-off between computing and wireless communication
inherent in the SC' and EC conditions. We extend the eval-
vation of Furcifer performance to include IEEE 802.11ac. In
these experiments, we replicated the same path for the MD,
while concurrently running increasing parallel connections of
up to thirty clients. We use a Wi-Fi network interface that
supports the IEEE 802.11ac 5GHz protocol and establish a
connection between the £S and M D over an 80 MHz band.
Our Wi-Fi 5Ghz antennas also support MU-MIMO technol-
ogy which additionally improves the overall communication
performance.

Figure 7 shows F'PS rate as a function of the number of
concurrent clients, ranging from 10 to 30. All EC' compres-
sion strategies benefit from improved connection capabilities,
outperforming SC' when the number of clients is smaller
than 10. Instead, when the number of clients increases to
20 and 30, the additional load on ES penalizes EC over
SC of about 40% in terms of the average F'PS successfully
processed over time. As shown in the analysis that follows,
the superior performance compared to £S when the system
is under pressure is due both to the decrease in channel usage
and the effort of the server granted by SC. On the contrary,
when the full capacity of the network and server are available,
SC is penalized by the computing effort allocated to M D.
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Fig. 8. Comparison between the 802.11n (a) and 802.11ac (b) Wi-Fi protocols,
depicting the FPS_fails score with an increasing number of concurrent clients.

To better appreciate the impact of communications on the
computing mode, we conduct a comparative analysis between
the IEEE 802.11n and 802.11ac Wi-Fi protocols. The results
shown in Figure 8 depict the F'P.S achieved as the number of
connected clients increases. We note how the improved data
rates offered by the IEEE 802.11ac means that EC is the
winning solution up to a certain load level, whereas in IEEE
802.11n experiments, the superior compression granted by SC'
results in the latter being the winning solution. However, this
comparison is made with the same signal strength variability
for EC' and SC, moving the M D along the same spatial
trajectory.

C. PPM: Fareidolic Policy Management

In the previous sections, we demonstrated the need for
the dynamic adaptation of the computing configuration. We
now evaluate the ability of Furcifer - and specifically its
policy management module - to provide adaptation capabilities
without imposing a significant overhead. In terms of energy
consumption and optimal task performance, computing config-
urations can be clearly ranked based on the M D perspective.
In fact, EC does not impose any computing load to the M D
and achieves the best mAP thanks to the use of larger models.
SC' allocates minimal computing effort to the M D and has
the second best mAP. Finally, LC results in the largest energy
intake and worst performance. Thus, the decision engine has to
evaluate the ability of the individual computing configurations
to achieve the desired F'PS rate given the currently perceived
system state, and then select them in the order dictated by
energy and mAP. To support such decision process, we then
build simple KNN regressors that take as input application
context metrics sush as: the inference time on the ES, the
average round trip time, the communication channel quality,
and the current resource usage. This produces as output the
predicted F'PS rate for each considered computing config-
uration, allowing PPM to anticipate the resulting Quality
of Service (QoS) of a particular action before executing it.
We evaluate the regressors when training and applying them
in specific environments (e.g., indoor or outdoor), as well as
on their ability to generalize. The resulting loss metrics are
reported in Table II. It can be observed that when these re-
gressors are trained in the same context where they are applied,
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Fig. 9. Choices distribution of considered computing configurations depend-
ing on target F'PS rate for the Ground truth oracle (a) and our Pareidolic
Policy manager (b)

TABLE I
LOW COMPLEXITY FRAME RATE PREDICTORS

indoor outdoor indoor — outdoor

RMSE MAPE | RMSE MAPE | RMSE MAPE
EC_JO 0.27 7.30 0.37 10.69 0.58 20.37
EC_J50 | 0.50 7.86 0.59 9.25 0.71 15.37
EC_J70 | 0.47 7.48 0.53 7.68 0.81 15.98
SC 0.70 7.46 0.97 9.48 1.23 15.63

the error is minimal (below 11% M APE — Mean Absolute
Percentage Error) across all computing configurations. In the
case of transfer learning, where models trained indoors are
deployed outdoors, the maximum loss value M APFE increases
to 20%.

Adaptation Results: We compare Furcifer performance with
a static LC solution, which represents the only viable option
when the connection quality or system load cannot support the
desired F'PS rate. Figure 9 shows the distribution of decisions
made by Furcifer policy manager across the spectrum of avail-
able cloud continuum strategies. It is important to note that
our policy manager, despite its low complexity, demonstrates
the ability to match the configuration that an oracle controller
would implement. Table III reports the Root Mean Squared
Error (RMSE) between the percentage of choices made by
Furcifer PPM low complexity policy manager and a baseline
DRL agent. The striking alignment between the decisions
made by the Furcifer pareidolic policy manager and the ground
truth highlights the feasibility of deploying a low complexity
predictor deployed at M D, where more complex controllers
may fail to train properly or adequately generalize.

In the IEEE 802.11n configuration, Furcifer reduces the
energy intake by approximately 80% while achieving an
average mAP score increase of over 20% in comparison to
LC'. The relevance of these outcomes is further amplified when
using the IEEE 802.11ac protocol. In this scenario, energy
savings exceed 100%, and m AP consistently maintains a level
above 20% for all defined targets F'PS. As Figure 10 shows,
Furcifer can easily generalize, accurately predicting the frame
per second even when trained on an indoor environment and
then tested outdoor.

55

Fig. 10. mAP gain and Energy saving with IEEE (a) 802.11n and (b)
802.11ac Wi-Fi protocols

TABLE III
RMSE BETWEEN PERCENTAGE OF OD COMPUTING CONFIGURATIONS

target FPS  PPM  DRL
4 7.848 87.210
5 2.287 104.979
6 21.875  123.547
7 32.552 101.824
8 36.892 75419
9 7.465 78.375
10 24.045  69.928
11 58.593  71.310

RMSE 23.944  89.074

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Furcifer, an innovative framework
designed to provide seamless adaptation of the cloud contin-
uum computing configuration in dynamic mobile settings. Our
approach based on containers and simple predictors result in an
extremely low-complexity and low-overhead solution, which
we prove effective in a wide set of deployment environments,
system states, and wireless settings. In addition to EC and
LC, we have developed a highly optimized neural model per-
forming supervised compression, by showing that it represents
an extremely effective third computing configuration. In our
tests, Furcifer achieves remarkable results, demonstrating a
2x reduction in energy consumption and a 30% additional
mAP score gain compared to LC'. Additionally, it delivers an
impressive three-fold increase in the F'PS rate compared to
EC. These achievements underscore the considerable impact
of Furcifer’s dynamic adaptation engine in enhancing both
energy efficiency and performance. In the future, we intend
to explore other computationally demanding tasks, such as
Semantic Segmentation and LiDAR-based 3D mapping, to
practically show the applicability of the Furcifer framework
to a wider spectrum of real-world use cases. Moreover, our
road map includes the release of an open-source version of
Furcifer, along with an in-depth exploration of the benefits
of our policy-based adaptation on a diverse range of mobile
devices.
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