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Abstract—The vast majority of cardiovascular diseases are
avoidable or treatable by preventive measures and early de-
tection. To efficiently detect early signs and risk factors, car-
diovascular parameters can be monitored continuously with
small sensor patches, which improve the comfort of patients.
However, processing the sensor data is a challenging task with
the demanding needs of robustness, reliability, performance and
efficiency. The field of deep learning has tremendous potential
to provide a way to analyze cardiovascular sensor data to detect
anomalies which alleviates the workload of doctors for more
effective data interpretation. In this work, we show the feasibility
of applying deep learning for the classification of synchronized
electrocardiogram and phonocardiogram recordings under very
tight resource constraints. Our model employs an early fusion
of data and uses convolutional layers to solve the problem of
binary classification of anomalies. Our experiments show that
our model matches the accuracy of the current state-of-the-art
model on the ”training-a” dataset of the Physionet Challenge
2016 database while being more than two orders of magnitude
more efficient in memory footprint and compute cost. Further, we
demonstrate the applicability of our model on edge devices, such
as sensor patches, by estimating processor performance, power
consumption, and silicon area.

Index Terms—patient monitoring, edge computing, tiny-ml,
smart sensing, sensor patches

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death,
globally accounting for around a third of all deaths in 2021 [1].
Earlier detection of cardiovascular diseases or their associated
risk factors yields more effective preventive measures and
better prognosis [2], [3].

One way to achieve efficient detection of early signs of
cardiovascular diseases is patient monitoring. Using different
sensor modalities can aid the diagnosis if these modalities
complement each other. For this reason, this work uses two
data types, namely electrocardiogram (ECG) and phonocardio-
gram (PCG). Realizing a multi-modal long-term monitoring
while minimizing the impact on daily activities of a patient
requires a ubiquitous, lightweight and small measurement de-
vice. However, manual interpretation of the enormous amount
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of data from multiple sensors is not feasible at a large scale
when many patients are monitored simultaneously. Thus, this
data has to be processed automatically.

The area of Deep learning (DL) provides methods to analyze
this data. Many DL methods have been proposed and were
shown to yield improved performance in the analysis of ECG
and PCG data [4], [5]. However, this increase in performance
comes at the expense of increased computational cost. DL
methodologies are usually demanding in computational re-
sources, which hinders their adoption in portable medical
applications.

Today, the required computational power is available both
in the cloud as well as in hub devices like smartphones
or tablets. However, transmission and remote processing of
sensitive health data gives rise to privacy concerns, additional
energy costs, and risk of service disruptions due to, e.g.,
loss of connection to hub device or cloud. Another option,
which this work focuses on, is to run the DL model on
the data collection device. This allows it to be used as a
standalone solution that requires transmission only in case of a
detected cardiovascular anomaly, thus reducing data transmis-
sion, providing better privacy and fulfilling the requirement
of continuous monitoring while allowing for independence
and freedom of the patient. However, this option puts very
tight constraints on the memory footprint (chip size), compu-
tational cost and energy consumption of a DL model. In this
work we show the feasibility of using a DL model in this
challenging context. First, we use an efficient convolutional
neural network (CNN) building block to build an efficient
end-to-end CNN for our cardiovascular monitoring use-case.
Then, we show its competitive performance by applying it
to a public dataset containing synchronized ECG and PCG
recordings, achieving a reduction in parameter count as well
as a reduction in Floating Point Operations (FLOPs) of more
than two orders of magnitude compared to the state-of-the-art
while matching its accuracy. Finally, we estimate the required
processor performance, power consumption and silicon area
of our model to show the feasibility of hardware application
with strict boundary conditions of a typical sensor patch.
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The remainder of this paper is organized as follows. In
Section II, we briefly review the related work. In Section III,
we describe our method in detail. In Section IV, we describe
the experimental setup and present results on the quantitative
performance of our method. In Section V, we present a
detailed analysis on hardware requirements to efficiently run
our model on a sensor patch. In Section VI, we discuss the
performance and hardware requirements results. Finally, in
Section VII, we give concluding remarks.

II. RELATED WORK

In the literature, various ML-based approaches to the prob-
lem of classification of ECG and PCG signals have been
proposed. Susič et al. [6] first filter the PCG signal to reduce
the influence of noise and differences in experimental setup
between recordings. Then, after normalization, the PCG is
segmented into individual cardiac cycles in order to determine
the temporal location of the first and second heart sound,
systole and diastole. They manually extract features in time
and frequency domains, as well as statistical features and
features resulting from wavelet decomposition. The authors
use a support vector machine (SVM) to classify the extracted
features. Similarly, Low et al. [7] segment the heart sound, as
well as the synchronized ECG signal for the same time period.
Then, the authors detect the location of the QRS complex
in the ECG signal and extract the first and second heart
sounds from the PCG signal. Hettiarachchi et al. [8] make
use of continuous wavelet transforms to construct scalograms
from the ECG and PCG signals. Then, a CNN [9] is used.
This model has two separate branches for either signal type
which are then fused in the deeper dense layers. Gjoreski et
al. [10] use a pre-processing that is similar to [6], however,
Gjoreski et al. utilize both classic ML and DL models. In
this approach, first, the PCG signal is divided into multiple
segments. Then, a set of features are manually extracted, and
together with the raw signals, the features are given as input
to both a random forest model and a CNN model. Finally,
the resulting segment-level predictions, manually extracted
features and CNN features are all analyzed by another classic
ML model, which outputs the final classification scores for the
entire recording. This way, Gjoreski et al. take into account
that different segments might contain different amounts of
relevant information for the classification task. Li Pengpai et
al. [11] also make use of both classic ML and DL. However,
in this approach, the DL models, which are composed of
both convolution and long-short-term-memory (LSTM) [12]
layers, are used to extract features for a support vector machine
(SVM) [13] classifier. Here, Li et al. make use of the raw
ECG signal while decomposing the PCG signal into multiple
frequency bands. Li Jinghui et al. [14] also utilize both an
LSTM and a CNN model to fit better to the sequential nature
of the ECG and PCG signals. The authors use raw inputs
for the LSTM and use a wavelet transform pre-processing for
the CNN. Thomae et al. [15] use a very light-weight model
without feature extraction. The authors use the raw PCG signal

as the only input for their deep learning model and achieve an
average of specificity and sensitivity of 0.55.

As summarized, there exist previous works aiming at
solving the problem of anomaly detection with ECG and
PCG signals. Similarly, in this study, we are using both
sensor modalities with a DL-based model. However, unlike
the aforementioned related works, the main focus of our
approach is the efficiency on extremely resource-constrained
edge devices, such as sensor patches. Our work differs from
the previous work by one or more of the following aspects.
Our methodology is (1) end-to-end, i.e., does not require the
usually costly step of feature extraction, (2) provides state-of-
the-art classification performance, (3) is more than two orders
of magnitude less demanding in terms of memory footprint
and computational cost compared to the current state-of-the-
art model.

III. METHODOLOGY

This section describes our method in detail. Figure 1 illus-
trates the general system which includes three components:
sensing of the ECG and PCG signals; processing of the data
to get a classification result; and, finally, communication in
case of a detected cardiovascular anomaly. All three main
operations outlined here are assumed to be run on a resource-
constrained, and possibly battery-operated healthcare sensor
patch. This means that, in addition to the demands imposed by
the application of the DL model, the other functionalities, such
as sensing and communication, also incur computational cost,
memory requirements (silicon area) and energy consumption.
However, for the scope of this section, we limit ourselves to
the analysis of the processing portion of the pipeline, since it
usually constitutes the majority of the required resources.

A. Training dataset

To train and test our model, we use the synchronized ECG
and PCG data from the Physionet/Computing in Cardiology
Challenge 2016 dataset [16]. This is a heart sound dataset that
consists of nine separate databases collected by seven different
research teams. These databases differ in many aspects such
as the recording devices, recording locations, data quality,
and patient types. Among these, we use the Massachusetts
Institute of Technology heart sounds database (designated as
”training-a” in the data files) which is the only database
that contains synchronized ECG and PCG recordings. In
this database, there are 409 recordings from 121 subjects,
of which 405 contain both ECG and PCG data. There are
117 samples from healthy patients, and 288 samples from
patients with various conditions, such as mitral valve prolapse,
aortic disease, benign murmurs, or miscellaneous pathological
conditions. The diagnosis for each patient was verified through
echocardiographic examination at the Massachusetts General
Hospital. Each recording in this dataset has a duration of
9 − 37s and was recorded with a Welch Allyn Meditron
electronic stethoscope during in-home visits or in the hospital
in an uncontrolled environment. The samples in this database
are corrupted by various sources of noise and the sampling rate
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Fig. 1. An overview of the system pipeline. After the ECG and PCG signals are measured the data is interpolated, downsampled and normalized. After that
windows are extracted. The windows of ECG and PCG signals are concatenated and fed into our model which classifies them into normal or abnormal. A
majority voting over multiple windows gives the final classification. In case of a cardiovascular anomaly the data is transmitted to a doctor.

of the data was reduced from 44,100 Hz to 2000 Hz when the
challenge database was assembled by Liu et al. [16].

B. Pre-Processing

Before we input the raw ECG and PCG data to our
network, we apply a simple pre-processing (see Figure 1).
First, we interpolate any missing values from the ECG and
PCG signals and then downsample the signals from 2000 Hz
to ∼42.67 Hz. We then normalize the signals separately to a
mean of 0 and a standard deviation of 1. Then, 3 s windows
with an overlap duration of 2 s are extracted. Given the
sampling rate of ∼42.67 Hz, this corresponds to having a 1D
tensor with a length of 128 samples for each window and sen-
sor. Finally, for both of the sensors, tensors for the same time
interval are concatenated in the width dimension, resulting in
an input of shape 1× 1× 256 (Channels × Height × Width),
which is then fed to the neural network. This implies that
our network does not need any heart beat segmentation of
the signals or feature extraction which saves computational
resources and energy consumption. We choose a sampling
frequency of ∼42.67 Hz since our model achieves the best
results with it. Results with other sampling frequencies are
omitted due to space constraints

C. Network Design

The neural network used in this paper is a CNN and consists
of four parts. Table I shows the operations and parameters used
in the network architecture. The first part of the network is an
affine transform layer that allows for better data fusion by
enabling the network to assign a different weight on the ECG
and PCG portions of the input. This is required because the
two signal types might contain a different amount of relevant
information for a sample. Separate, trainable shift and scale
parameters are used for ECG and PCG. Before training, we
determine the initial values for these parameters with a simple
grid search. The second part of our network is a convolutional
layer that uses a stride of 2 in order to reduce the signal length
further. This serves to reduce the computational cost in the
following convolution layers. The third part consists of four
bottleneck blocks introduced in the MobileNetV2 paper [17].
The main idea behind a bottleneck block is to maintain low
dimensionality in input and output while allowing for higher
expressiveness when performing the spatial filtering with the
depthwise convolution. We choose this building block because
it was shown to lead to a significant reduction in computational

TABLE I
NETWORK OPERATIONS AND PARAMETERS

Input Operator Exp. size Non-Lin. Stride

1x1x256 Affine Transform - - -
1x1x256 Conv2d, 1x3 - HardSwish 2

16x1x128 Bottleneck, 1x3 16 ReLU 1
16x1x128 Bottleneck, 1x3 72 ReLU 1
24x1x128 Bottleneck, 1x3 88 ReLU 1
24x1x128 Bottleneck, 1x5 96 HardSwish 1
40x1x128 Avg. Pool - - -

40x1x1 Linear - - -

cost [17]. We choose channel numbers and non-linearities
of convolution layers according to the architecture of the
MobileNetV3-Small [18]. Compared to the MobileNetV3-
Small we use 1D convolutions instead of 2D convolutions and
reduce the stride length in the bottleneck blocks to 1 to avoid
further downsampling. Following the feature extraction by a
series of bottleneck blocks, the fourth and final part of our
network classifies the input. For this, a fully-connected layer
with the softmax activation is used, and the class scores for
the two classes, namely normal and abnormal, are computed.

D. Post-Processing

In order to combine the class scores for individual windows
into a classification result for the entire recording, we use
majority voting over all windows belonging to the same
recording. In a practical implementation of our system, we
envision the majority voting to be done following the clas-
sification of every window over N amount of windows. In
other words, every second we classify the current 3 s window
and redo the majority voting based on the current window and
the last N − 1 windows. Note, that the parameter N has to
be chosen carefully since it has an effect on how sensitive the
system is to short-term fluctuations. In case of the detection of
a cardiovascular anomaly the data containing the anomaly has
to be transmitted to a doctor in order for the doctor to assess
the classification of the network. The precise implementation
of this has implications for memory footprint and is discussed
in Section VI.

IV. MODEL PERFORMANCE

In this section, we first describe the evaluation metrics and
experimental setup and then present the results.
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A. Metrics

The following metrics are used to measure the perfor-
mance of the model: accuracy, sensitivity, specificity, precision
and F1 score [19]. In addition to those metrics, the area
under the receiver operating characteristic curve (AUC) is
also calculated. In order to measure the memory cost, we
measure the parameter count of the model and we estimate
the computational cost by calculating the number of FLOPs.

B. Training

We train the network for 300 epochs on an NVIDIA
RTX A6000 using the PyTorch framework [20]. We use the
AdamW optimizer [21] to train our network to minimize the
cross-entropy loss. We use an initial learning rate of 10−3

and a batch size of 32. During training, we use weighted
random sampling to counter the class imbalance problem of
the training dataset.

C. Evaluation

To evaluate our model, we split the recordings in the
full dataset randomly into a group of 325 recordings for
training and a group of 80 for testing. The random splitting
is done in a way that ensures a balanced test set of 40
normal and abnormal recordings. The resulting splits contain
7395 abnormal, 2281 normal samples for training, and 1234
abnormal, 1217 normal samples for testing. Due to the fact
that each subject contributed several recordings it is likely that
recordings from the same patient are present in both the train
and test set. We train and test our model five times and report
back on the performance averages and standard deviations.

D. Results

We compare our model with the three previous works with
the highest accuracy in literature that used a DL approach
trained and evaluated on the same database, as well as made
use of both the ECG and PCG data [8], [11], [14]. Results are
summarized in Table II. The performance results of the other
models are taken from the respective works and the parameter
count and FLOPs were calculated by rebuilding their models.
The model of Li Jinghui et al. [14] includes a slightly modified
GoogLeNet architecture and LSTM. However, the parameter
count is dominated by the GoogLeNet which is why for ease of
calculation we only included the parameter count and FLOPs
of this modified GoogLeNet as lower bounds in Table II
indicated by the ”>”. The table shows our approach matches
the performance of the state-of-the-art model of Li Jinghui et
al. [14] while being more than two orders of magnitude more
efficient in both parameter count as well as FLOPs.

In order to examine the effect of using both ECG and
PCG signals we also compare the performance of our model
when using ECG only, PCG only and both signals together
(Table III). The table shows our model benefits significantly
from using both types of signals. The model using both signal
types clearly outperforms the other two models across all
performance metrics. The difference is especially large for
specificity and precision. We also examine the impact of the

affine transform layer at the beginning of our model. As it
can be seen from Table III, the layer has a large impact
on all performance metrics. The combination of ECG and
PCG without the affine transform layer performs worse than
with the affine transform layer. Nevertheless, despite the drop
in performance when using only the ECG signal our model
performs better than both the approach of Li Pengpai et al.
[11] and the approach of Hettiarachchi et al. [8] that utilize
both ECG and PCG signals.

For the analysis of hardware requirements in Section V
we quantize our model to 8-bit. We use quantization aware
training [22]. Table IV shows the performance of the quantized
version is on average 2.75 percentage points lower than that
of the unquantized version but still achieves high accuracy,
performing better than two of the three baseline methods.

V. HARDWARE REQUIREMENTS ANALYSIS

In this section we estimate the required processor perfor-
mance, power consumption and silicon area of our model to
show its applicability on hardware typically found on sensor
patches. In order to do that we establish upper bounds for
those variables to compare our model against. Song et al.
[23] present a fully-integrated low-power SoC for measuring
multiple vital signs in sensor patches, including a prior-art
comparison. From these works we extract the following upper
bounds for SoC in terms of performance, power consumption
and silicon area::

• Processing clock frequency of up to 100 MHz;
• Power consumption during processing of up to 3.7 mW ;
• Total silicon area of up to 18.5 mm2 in 55 nm CMOS.
With these bounds, we assess the feasibility of applying our

model on sensor patches. As mentioned in Section IV, we train
and subsequently quantize our model to 8-bit operation. We
make a first-order hardware cost assessment using a neural
processing unit (NPU) as the targeted hardware accelerator
next to a microprocessor core. We select the ARM Ethos-U55
NPU due to its small size and cost-effective implementation
[24]. The following hardware configuration applies:

• 40 nm CMOS process node;
• Compute core configuration with 32 MACs

cycle , which is the
smallest option for Ethos-U55;

• Memory configuration supporting a total of 64 KB
SRAM with 64-bit R/W access, which we implement as
two instances of 32 KB.

A. Assessment of Processor Performance

We assess the NPU hardware performance while running
our model by utilizing ARM’s Vela compiler [25]. The ob-
tained results for the ARM Ethos-U55 NPU are as follows:

• Inference total cycle count of 461726 and
1854792 MACs

inference
• Compute cycle count of 461726
• Memory access of 54030 cycles

As our model requires 1 inf
sec , the low cycle count of 461726

allows for operating at a NPU clock frequency of 500 kHz,
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TABLE II
PHYSIONET 2016 CLASSIFICATION RESULTS COMPARISON WITH PREVIOUS WORKS

Author Accuracy Sensitivity Specificity Precision F 1 Score AUC Params FLOPs

Hettiarachchi, Ramith, et al. (2021) 0.9041 0.9474 0.75 - - 0.9106 ∼711K ∼277M

Li, Pengpai, Yongmei Hu, and Zhi-Ping Liu. (2021) 0.873
±0.010

0.903
±0.006

0.845
±0.018 - 0.874

±0.010
0.936
±0.011 ∼445K ∼32.8M

Li, Jinghui, et al. (2022) 0.9613 0.9848 0.908 0.9604 0.9724 - >5.8M >1.5G

Ours 0.97
±0.0143

0.975
±0.0177

0.965
±0.0224

0.966
±0.0208

0.970
±0.0139

0.986
±0.0053 15.9K 1.86M

TABLE III
CLASSIFICATION RESULTS OF OUR MODEL WITH DIFFERENT SENSOR MODALITIES

Model Accuracy Sensitivity Specificity Precision F 1 Score AUC

ECG Only 0.92
±0.0112

0.97
±0.0209

0.87
±0.0326

0.883
±0.0244

0.924
±0.0096

0.938
±0.0075

PCG Only 0.6625
±0.0234

0.835
±0.0379

0.49
±0.0335

0.621
±0.0175

0.712
±0.0218

0.651
±0.0300

ECG + PCG
(No affine)

0.935
±0.0056

0.955
±0.0209

0.915
±0.0224

0.919
±0.0189

0.936
±0.0054

0.951
±0.0138

ECG + PCG
(Affine)

0.97
±0.0143

0.975
±0.0177

0.965
±0.0224

0.966
±0.0208

0.970
±0.0139

0.986
±0.0053

TABLE IV
CLASSIFICATION RESULTS COMPARISON BETWEEN OUR 8-BIT QUANTIZED AND NON-QUANTIZED 128 SIGNAL LENGTH MODEL

Model Accuracy Sensitivity Specificity Precision F1-Score AUC

Not quantized 0.97
±0.0143

0.975
±0.0177

0.965
±0.0224

0.966
±0.0208

0.970
±0.0139

0.986
±0.0053

Quantized 0.9425
±0.0068

0.985
±0.0224

0.9
±0.0306

0.909
±0.0250

0.945
±0.0058

0.962
±0.0142

leading to an inference time of about 0.92 s. Utilizing a higher
NPU clock frequency reduces the inference time and allows
for duty-cycled processing in combination with a low-power
standby mode. For example, a 100 MHz clock can reduce
the inference time to about 5 ms and a standby time of
about 995 ms every second. The final NPU clock frequency
choice depends on the system requirements as well as process
technology characteristics. However, this estimation shows that
our model is suitable for sensor patch application from an NPU
clock frequency viewpoint.

B. Assessment of Power Consumption

We estimate the NPU power consumption while running
our model based on the data published in [26]. The energy
consumed by a single multiply-accumulate (MAC) unit is
estimated to be about 0.55 pJ

MAC at 0.9 V (ref. 8-bit MULT,
16-bit ACC, 3 registers). For the same operating condition, a
32 KB SRAM with 64-bit access consumes about 20 pJ per
access, which is about 36x more energy consuming.

We calculate a first-order estimation of the NPU power
consumption as follows:

PNPU = (Pcomp + Pmem), (1)

where PNPU is the total NPU active power when running
a given DL model, Pcomp is the power consumed by the
compute portion and Pmem is the power consumed by the
SRAM portion. We calculate Pcomp as follows:

Pcomp = EMAC · #MACs

cycle
· util · #cycles

inf
· inf
sec

+ Pcomp leak,
(2)

where EMAC is the energy consumed by a single MAC
operation, #MACs

cycle refers to the size of the MAC array
supported by the hardware, util is the average MAC array
utilization, #cycles

inf is the total compute cycles per inference,
inf
sec refers to the inferences per second and Pcomp leak is the
leakage power of the compute portion. We calculate Pmem as
follows:

Pmem = ESRAM RW · #cycles

inf
· inf
sec

+ PSRAM leak, (3)

where ESRAM RW is the energy consumed by the SRAM
R/W access, #cycles

inf is the total memory access cycles
per inference, inf

sec refers to the inferences per second and
PSRAM leak is the leakage power of the 64 KB memory
portion. Generally, DC-DC conversion is applied from sensor
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TABLE V
ESTIMATED NPU TOTAL POWER CONSUMPTION AND BATTERY CURRENT

General

Battery voltage (VBAT )
Li-ion: 4.2
LiMgO2: 3.0
Zinc-Air: 1.2

V

Supply voltage (VDD) 0.9 V

Ambient temperature (η) 25 ◦C

DCDC efficiency (η) 0.8

Estimated NPU power consumption

Total power 11.9 µW

Pcomp (Pcomp leak)
Pmem (PSRAM leak)

2.8 (1.8)
9.1 (0.5)

µW
µW

Estimated NPU current from battery

Li-ion @4.2V VBAT 3.6 µA

LiMgO2 @3.0V VBAT 5.0 µA

Zinc-Air @1.2V VBAT 12.4 µA

patch input battery supply (VBAT ) down to the NPU supply
voltage (VDD); we assume a DC-DC efficiency of 80%. For a
given battery type, the first-order current from the battery can
be estimated as follows:

IBAT =
PNPU

η · VBAT
, (4)

where η is the DC-DC efficiency and VBAT is the battery
voltage. Table V shows the estimated NPU total power con-
sumption and battery current for typical battery types. It
can be observed that NPU power consumption is very low
when running our model, and so is the current consumed
from the battery regardless of battery type. With such low
power consumption, our model acceleration does not face any
concerns to be deployed on a sensor patch.

C. Assessment of Silicon Area

We make a first-order area estimation of the NPU and
related memories based on an example design in 40 nm
CMOS. The ARM Ethos U55 micro NPU is as small as about
0.6 mm2 including a row utilization of 60% for place-and-
route. The NPU SRAM of 64KB is about 0.3mm2, assuming
two 32 KB SRAM with an instance placement utilization
of 90%. The pre-processing block requires an SRAM of
128 Bytes per channel to store the incoming sensor data for
a 3 s window which is << 0.01 mm2. Adding some further
digital logic for control and data path, we estimate the NPU
total area to be about 0.9 mm2.

From this assessment, we have demonstrated that the over-
head of adding such an NPU to the SoC is small compared to
the upper bound of total silicon area. Thus, we conclude that
utilizing such NPU for sensor patches can be considered as a
realistic scenario from an area viewpoint.

VI. DISCUSSION

The comparison with previous DL approaches in table II
shows that our model can achieve both high classification
performance as well as high efficiency. As mentioned in
Section III the main part of our network design resembles
a miniaturized MobilenetV3-Small that is modified to fit our
specific input data of 1D biosignals as opposed to RGB
images. We thus repurpose what has been developed in the
field of computer vision to achieve both high performance
as well as efficiency. In our analysis we have so far not
considered network designs that are traditionally applied to
sequential data such as LSTM networks or transformers [27].
While being inherently suitable to sequential data LSTMs
suffer from the fact that they are not parallelizable. CNNs
are parallelizable which is beneficial for inference time and
can thus allow less power consumption for a given processor
clock frequency due to increased standby time. Transformers
on the other hand are parallelizable and as the main building
block of large language models achieve remarkable results in
areas such as natural language processing (NLP) [28] but they
usually require more parameters which implies higher memory
cost and a substantial amount of data in order to surpass
the performance of other network architectures. Furthermore,
CNNs have already been successfully deployed for time-series
data processing [29], [30]. Considering the fact that in our case
we are dealing with a small dataset of 405 recordings and our
goal is to achieve high efficiency for the application on low
power sensor patches we consider efficient CNN architectures
already established in the computer vision field.

The experiments with different sensor modalities (Table III)
show that our model benefits from both ECG and PCG signals.
The PCG recordings in the dataset that we used are corrupted
by various different noise sources such as kids playing or
dogs barking. PCG recordings are based on sound signals
and are thus more impacted by noise factors like these than
ECG recordings which are based on electrical signals. Using
PCG signals along the ECG signals as input to our DL model
does not reduce performance, in fact it leads to an increase
in performance. Thus, we show that even a tiny DL model
such as ours can utilize different sensor modalities in order to
achieve better performance than in the single sensor modality
case.

As mentioned in Section III-D in case of a detected cardio-
vascular anomaly we envision our system to send the current N
windows over which the majority voting has led to a positive
classification to a doctor for final assessment. Aside from a
legal perspective, reliability and trustworthiness also demand
the data suspected to contain the cardiovascular anomaly to be
sent to a doctor for final assessment. This of course requires
further memory and thus silicon area for the past N-1 windows.
However, since we downsample the data we end up with only
128 bytes per signal type and window which, as mentioned in
Section V-C, is insignificant in terms of required silicon area.

Our analysis of the sensor patch applicability is based on
simulations and reasonable assumptions informed by existing
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hardware. However, this only allows rough estimations to
be made. Since in our case our model is well below the
considered upper bounds we believe that our conclusion holds
even when assuming a sizeable margin of error due to first-
order approximations.

VII. CONCLUSION

In this work, we show the feasibility of applying a deep
learning model on resource-constrained medical edge de-
vices, such as sensor patches. We evaluate our model on the
”training-a” dataset of the Physionet/Computing in Cardiology
Challenge 2016 database. Our model matches the current state-
of-the-art performance while being more than two orders of
magnitude more efficient in both parameter count and FLOPs.
To analyze the applicability of our model on low power edge
hardware we approximate the required processor frequency,
energy consumption as well as silicon area based on ARM’s
Ethos-U55 NPU using their Vela compiler. We show that the
requirements imposed by our model are well within reasonable
bounds based on existing SoCs for healthcare sensor patches.
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