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Abstract—This paper introduces a novel, lightweight, on-board
approach to crowd pattern identification, ingeniously using the
processes of existing video compression standards, particularly
H.264 or MPEG-4. Piggy-backing on the H.264 video-encoding
algorithm, we propose real-time crowd pattern recognition and
identification methodologies that can identify macroscopic pat-
terns in as low as 2 milliseconds on NVIDIA TX2, resulting
in around 45X execution time reduction compared to existing
approaches. Furthermore, we introduce a temporally aware ap-
proach to pinpoint and adapt to crowd movement patterns, con-
tinuously recalibrating as a drone’s Point Of View (POV) varies or
observed motions diverge. Evaluating our method against publicly
available datasets, we emphasize our system’s performance and
computational advantages, especially when faced with real-time
observational shifts. In conclusion, our approach elegantly bridges
the gap between crowd safety imperatives and the challenges of
UAV monitoring, heralding a new era of real-time drone-centric
crowd management intelligence.

Index Terms—Crowd Pattern Recognition, Crowd Surveillance,
On-board Computation, Video Encoding

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
transitioned from niche gadgets to ubiquitous tools, finding use
in diverse fields such as agriculture, cinematography, and public
safety [1]. Their unique aerial perspective offers an unparalleled
advantage, particularly regarding monitoring scenarios like
mass gatherings, protests, or public events. UAVs, also known
as drones, can both observe and guide the crowd in the event of
an emergency. The challenges unique to drones include unreli-
able connectivity—in contrast to wired fixed cameras—Ilimited
on-board resources, and complex coordination, while potential
advantages include mobility, adaptability, and distinct Points
Of View (POVs). Given these challenges and opportunities,
a traditional centrally located control room-based monitoring
approach becomes untenable and unscalable for drones [2].

Therefore, it is crucial to rethink monitoring approaches to
use the mobility of these new tools to its fullest. Therefore,
a hierarchical management approach is needed in which each
drone has some real-time capability on board for local situ-
ational awareness, and there exists a central server that can
deploy and direct drones to certain Regions Of Interest (ROIs),
and issue directives. This approach (as shown in Fig. 1) is well
suited for managing mobile crowds, whose intent and direction
could change depending on time, location, and type of event [3].
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Fig. 1: Our concept of drone-based crowd management: Autonomous drones
can predict crowds in real-time, focus more on potentially anomalous areas,

and issue local warnings. A central server, on the other hand, is involved in
global monitoring as well as coordination.

To realize such a management approach, however, several
innovations are needed, both in terms of algorithmic solutions
and physical infrastructure. Due to the size of this problem,
it is impossible to tackle it as a whole in one technical
paper. As a result, we limit the scope of this paper to a
novel algorithmic approach to crowd motion pattern recognition
and identification that can be extended to crowd behavior
recognition, management, and overcrowding prevention while
keeping in mind that it is a piece of the overall puzzle directed
toward rapid, mobile, and adaptive crowd monitoring in the
presence of unreliable connectivity. Recognizing the gap in
available and needed resources in a drone with a limited battery,
a compelling need for the algorithm to be lightweight emerges,
as existing algorithms could put undue pressure on the device
and jeopardize public safety. Therefore, our proposal can help
improve safety by minimizing stress while providing local
decision-making capabilities.

Our Approach: Achieving real-time decision-making on
resource-constrained platforms such as drones is challenging,
so it has given impetus to a growing body of research that
focuses on offloading computation to nearby powerful nodes,
strategically placed in vehicles close by or connected to the
grid, known as Mobile Edge Computing (MEC) [4]. While
an offloading approach might be faster than local process-
ing in some scenarios, offloading during crowd monitoring
involves competition with requests from users in the crowd
itself, thwarting real-time decision-making. Implementing an
exclusive communication infrastructure for drones, on the other
hand, is not only not scalable, but also limits the mobility of
drones—one of the key advantages of drone usage. With these
challenges in mind, we present a lightweight approach for on-
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board real-time crowd pattern recognition and identification,

taking advantage of video encoding processes (typically H.264

or MPEG-4 [5]) already running as the drone records video.
Our Contributions: We make the following contributions:

« We introduce a novel algorithm for macroscopic crowd
pattern detection and identification that shares the internal
motion estimation done for video recording.

e We propose a temporally aware approach to identify
macroscopic crowd movement that adapts its output as the
drone changes its POV, or as the observed motion changes
in the current POV.

o We evaluate our method with publicly available datasets,
showcasing our performance and computational savings.

Paper Outline: The remainder of the paper is organized as
follows. In Sect. II, we position our work with respect to the
related literature. In Sect. III, we explain our proposed resource-
sharing approach. In Sect. IV, we evaluate our approach on a
variety of light and dense crowd datasets. Finally, in Sect. V,
we conclude and discuss future work.

II. RELATED WORK

This work brings computational awareness to the field of
crowd identification and monitoring and therefore has intersect-
ing ideas from both research bodies. Consequently, the review
is divided into multiple subparts as follows.

UAV-based crowd monitoring: Since the inception of
UAVs, experts have strived to harness their natural mobility
to monitor crowds. De Moraes and De Freitas [6] elaborated
on a system that employs multiple UAVs for this purpose.
However, their study focuses primarily on drone coordination.
In contrast, our study emphasizes the goal of transforming
real-time video footage into actionable insights into crowd
dynamics. Other works, such as, Rodriguez-Canosa et al. [7]
suggest a technique for real-time detection and tracking of
objects via UAV cameras, but it underperforms with densely
populated crowds.

Macroscopic Crowd Pattern Recognition: There has been
active work on macroscopic crowd patterns. Matkovic et al. [8]
use Brox Flow [9] as a starting point and build on it to
achieve simple identification and anomaly detection in crowds
on a macroscopic scale. However, the approach is complex,
hindering its successful implementation in resource-constrained
devices, such as drones. Similarly, Zhang et al. [10] use a
trajectory tracking approach for crowd segmentation, but their
approach is slow—on the order of a few seconds per frame.
Finally, Almeida and Jung [11]—using Farneback Flow [12]—
propose a relatively lightweight approach for crowd pattern
recognition, but their approach is not suitable for dynamic
UAVs.

Deep Learning-based Crowd Prediction: Optical flow
is defined as the pixel-by-pixel motion observed in a video
sequence. Methods for estimating flow range from low to
high complexity, such as Fast-FlowNet [13], and Deep Match-
ing [14]. These approaches are based on neural networks and
are quite resource-hungry, taking a few seconds for a single
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Fig. 2: Flow diagram representing the entire framework from taking incoming
video frames, producing block-matching motion estimation, contouring, detect-
ing, and identifying dominant motion patterns.

prediction on a CPU and a few hundred milliseconds on an
NVIDIA GTX Titan GPU [15], and therefore are untenable
for a small form factor drone. Fast-FlowNet [13] reduces the
computation time to around 500 ms on a small NVIDIA TX2
GPU, which is a great improvement, but still not fast enough
for real-time flow estimation. As a result, approaches relying on
flow, such as Mehran et al. [16], are also unsound for real-time
execution on-board.

Video Coding & Streaming: There has been active work
on video coding has been conducted in the last decade cul-
minating in the production of multiple standards, namely,
High-Efficiency Video Coding (HEVC), Joint Exploration
Model (JEM), and Versatile Video Coding (VVC) [17], to meet
the growing need for video streaming across the globe. The
improvement in coding efficiency has been tremendous; for
example, VVC achieves a bit rate reduction of approximately
50% over HEVC, which in turn achieves a bit rate reduction of
50% over previous Advanced Video Coding (AVC) [5], all for
the same video quality. This work capitalizes on these devel-
opments, choosing to piggyback on the H.264 video-encoding
algorithm resulting in efficient crowd pattern identification on-
board.

III. PROPOSED SOLUTION

In this section, we start by discussing the motion estimation
shared by our proposed algorithm, then detail our crowd pattern
detection approach, and finally end with the lightweight crowd
pattern identification method based on conditional logic rules.
Fig. 2 illustrates this process in a flow diagram.

A. Motion Estimation

The basic idea behind hybrid video encoding algorithms—
such as H.264—is the recognition of both spatial and tem-
poral redundancies in video format. Motion estimation and
compensation are used to address temporal redundancy. Two
types of motion estimation are used in H.264 encoding, namely,
intra- and inter-prediction. Intra-prediction deals with encoding
single frames without reference to other frames, while inter-
prediction deals with motion between adjacent frames and is
primarily the motion estimation we are interested in. For inter-
prediction, frames are divided into smaller, equally-sized blocks
called macroblocks. Usually, 16 x 16 macroblocks are used, but
smaller 8 x 8 and 16 x 8 macroblocks could also be used. To
estimate the motion, a block-matching algorithm compares the
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macroblocks between two adjacent frames. These algorithms
search for the closest macroblock in the subsequent frame for
each macroblock in the subsequent frame, optimizing a cost
function. MPEG-4 uses the Sum of Absolute Differences (SAD)
as its cost function, defined as >7—; Z?;é |fr(x+i,y+1) —
fe—1(u+i,v+7)|, where fi and fi_ are the k-th and (k—1)-
th frames, respectively, p and q are the length and width of the
macroblock, respectively, and z, y, u, and v are indices for
individual macroblocks in each frame. A search algorithm is
normally used to optimize block matching, as a brute-force
search can be very computationally intensive. Many search
algorithms have been devised—e.g., Line Diamond Parallel
Search (LDPS), Four Step Search (FSS), etc.—, and a particular
implementation of the H.264 standard might use one or the
other based on its constraints.

B. Macroscopic Pattern Detection

The intermediate output from H.264, in the form of motion
vectors corresponding to each macroblock, is then passed to
Algo. 1. We describe each step in detail as follows.

Algorithm 1: Detection and Identification Algorithm at
a High Level

v+ 0.8;
comb, norm < zeros_like(frame);
while video stream is active do
SME = getSharedMotionEstimate(currentFrame);
contours = findContours(SME);
removeSmallContours(SME, contours);
comb = v x comb + SME[magnitude];
norm[magnitude] = normalize(comb);
norm[angles] =

a x norm[angles] + (1 — &) x SME[angles];
normContours = getContours(norm);
removeSmallContours(norm, normContours);
turns = calculateTurns(norm);
identify(turns);

end

Contouring: To detect the pattern of crowd movement,
the first step is to group contiguous motion vectors. We use
contours as a means of locating contiguous motions throughout
the frame, giving rise to the potential of observing multiple
crowd patterns within a frame and saving computation by
focusing on only the contours rather than the whole frame.
It also helps to remove motion noise and aberrations caused
by drone movement due to wind or obstacles, as well as
imperfections in H.264 video encoding. Furthermore, to focus
only on dominant motion vectors and reduce computation, we
remove contours that are 1/4 or less of the size of the largest
contour in the frame.

Magnitude Decay: Furthermore, as UAVs experience fre-
quent video jitter and can change their POV, we introduce a
decay factor v € [0,1]. This factor deals with jitter in the
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short term and with changing POV in the long term. ~ reduces
the intensity of the previous motion estimates with each new
iteration. Decayed old estimate and new motion estimate are
then added together. This leads to smooth transitions between
motion patterns and removes intermittent jitter. Furthermore, as
seen in Algo. 1, magnitudes of the combined magnitude esti-
mate are normalized to a range of [0, 255], and then converted
to integers for faster computation.

Temporal Averaging: For motion angles, a decay approach
does not make theoretical sense, which is why we use a
temporal moving average approach to filter out noise in motion
angles. For this purpose, an averaging ratio « € [0, 1] is defined
where oo = 0 means that there is no averaging, and all detection
and identification are performed from the new motion estimate,
and vice versa for & = 1. The combined angle estimate is then
used for further identification.

C. Macroscopic Pattern Identification

Identification is a crucial step in promoting crowd safety sys-
tems via UAVs, and to that end, we introduce a novel approach
to identify dominant motion patterns, combining directional
movement ratios and conditional logic rules. Specifically, our
goal is to be able to identify lane, arch, and turning movements,
which are simple but crucial movement patterns. To explain
our identification approach mathematically, we use the set-
builder notation and logical operators such as A (logical AND),
— (implies), and = (equal to). Furthermore, we denote the
cardinality of a set (number of elements in a set) using the
operator |.|, that is, the cardinality of the set A would be
denoted as |A|.

We start by defining directional movements S as right, left,
up, and down motion (S = {r,l,u,d}) according to the drone’s
perspective. A certain motion vector v £ (vg, vy) would be
classified in these directions depending on 6 £ arctan(v,/v,),
which means that in a given frame, we would classify a motion
vector v as pointing right if {0 < § < 7/4ANTr/4 < 6 <
27}, left if {37/4 < 6 < 57 /4}, up if {n/4 < 6 < 3w /4},
and finally down if {57/4 < § < 7w /4}. Each contour ¢ has
multiple motion vectors pointing in either of these directions,
and identification information lies in the relative proportions of
these directions. For each contour c, the proportions of each
motion are given by the set P¢ = {p¢ : > p¢ = 1Az € S},
with each motion vector in a contour ¢ counting as one vote
towards any direction in S.

Finally, we are ready to identify dominant motion patterns:
Lanes are defined by the straight movement of pedestrians in a
specific direction. Thus, a contour c can be classified as a lane
under the conditions

H{ps € PC:pf > 0.5} =1

1
AHps e PC:ps <7} =3— c=lane, M

denoting that if only one direction represents a considerable
majority (> 50%) of the motion in a contour ¢, and all other
directions individually are less than a certain lane-threshold 7,
the contour can be classified as a lane. All other motions must
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be below the threshold 7; as, if there exist other significant
motions (> 7;) in a given frame, they could signify anomalous
or another type of crowd motion. In this case, we found 7
0.25 to provide the best empirical results.

The arch case handles motion patterns where pedestrians
have an arching motion in any direction. The condition for
arching motion is defined as,

{ps € PC:p§ <7}l =1— c=arch, )

denoting that an arch consists of three basic movements where
one movement connects two opposite movements (such as
down, followed by the right, and then followed by up, as in
the case of the UCF marathon 3 sequence [18]). Using this
pattern, we identify an arch by observing that one of the basic
movements should represent less than or equal to some arch
threshold, with the other three being dominant motions. For
our approach and evaluation, 7, = 0.10 was experimentally
determined to be suitable and used.
Finally, to identify turns, we propose the conditional,

{pS € PC:pS >} =2 — c=turn, 3)

where a turn is identified if there are two dominant motions in
a contour ¢, denoted by their relative proportion being greater
than a turn-threshold 7;. Furthermore, in this case, there are
additional directional conditions to specify, as a turn only
occurs when the detected movements are perpendicular to each
other. Thus, a turn is classified if the two movements above the
threshold are any combination except up and down or right and
left, as this would identify a lane rather than a turn. Finally, in
this case, 7, = 0.15 provided the best empirical results.

Beyond identifying motion patterns, this methodology can be
easily scaled and expanded. For every contour ¢, the dominant
pattern is calculated at a specific instant, while simultaneously
omitting smaller and less significant contours—those less than
1/4 of the size of the largest contour. Therefore, there could
be multiple dominant motions in different areas of the frame
if the drone is far enough, and simple heuristics (e.g., number
of dominant motions) can be used for inferring and adjusting
the drone’s position relative to the crowd.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our approach through both
qualitative and quantitative means. We first present the datasets
used in our evaluation and then move on to the results.

A. Datasets, Metrics & Experimental Setup

We use multiple datasets and metrics to evaluate our ap-
proach. Details are provided below.

Datasets & Metrics: To meticulously evaluate our pro-
posed framework, we incorporate dense crowd datasets,
namely the UCF Marathon dataset [18], the TUB CrowdFlow
dataset [21], and the Crowd Segmentation and Saliency Detec-
tion dataset [20], which encapsulate images of dense crowds
with dominant motion patterns, effectively synergizing with
our use-case of UAVs and aerial cameras. In particular, TUB
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CrowdFlow mimics UAV-recorded videos through dynamic
image sequences. Moving toward quantification, our evaluation
metric suite encompasses Average Angular Error (AAE), F1-
score, and execution times.

Refractory Period: We introduce a novel metric called
the ‘refractory period’ that quantifies the time necessary for
the drone to stabilize and accurately perceive crowd motion
patterns. This helps to better understand the capabilities of
the proposed approach, as although it does exhibit robustness
against minor jitters (common in UAV videos), it cannot
discern motions during substantive drone movement. Therefore,
‘refractory period’ not only evaluates the algorithm’s agility in
detecting motion but also sets limits to its expected performance
in real-world, during dynamic aerial crowd surveillance.

Experimental Setup: The approach was developed and
tested on a Dell Precision 7920 workstation with Python 3.11.0,
CUDA 11.8, and FFMPEG 4.2.2 libraries. Comparisons for
run-times were evaluated on NVIDIA TX2 and Nano GPUs.
Both of them are lightweight (116g and 138g, respectively)
embedded GPUs that can be loaded onto small drones to
increase computational processing, even though our approach
can run on-board the drone without any additional hardware.

B. Qualitative Evaluation

We present a qualitative comparison of our results with those
of other dominant motion pattern recognition and identification
methods in Fig. 3. In this vein, we identify the main works
for the identification of macroscopic crowd patterns, such as
Matkovic et al. [8], and Almeida and Jung [11]. However, all
of these works use optical flow as a baseline input and then
build on top of it using trajectory tracking or other approaches
to find the dominant motion pattern. In essence, the quality of
the prediction is dependent on the quality of the flow input.
The flow methods that these approaches use are Brox flow [9]
and Farneback [12]. However, we also compared with Lucas-
Kanade [19], and finally the Deep Matching [14] approach as
a representative of a data-driven algorithm.

As demonstrated in Fig. 3, the motion estimate (pseudo-
flow) derived from H.264, post-implementation of our noise
mitigation steps, compares favorably with other recent methods,
effectively identifying the dominant motion in a frame. In
particular, the resultant shape and structure are of satisfactory
quality (especially see performance on Mecca dataset [20]).
Furthermore, it is pertinent to acknowledge the limitations
introduced by our macroblock-based approach, as there exists
an inherent potential for increased error, which can be seen as
isolated blocks of incorrect motion interspersed within the dom-
inant pattern. However, the strategic benefits of our approach
continue to underscore its pragmatic utility and efficiency in
real-world applications.

C. Quantitative Evaluation

We present a detailed quantitative evaluation of our approach,
starting with an understanding of its trade-offs. Then we move
on to evaluating the identification performance compared with
other approaches, and finally end with the execution times.
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. 2t L L
(f) Deep Matching [14]
Fig. 3: A qualitative comparison between our approach and other recent approaches to recognize motion patterns in standard datasets. The detected motion is
highlighted using colors, while the choice of color represents the direction of the motion. (a) the reference image; (b) our proposed method; (c) the Farneback
flow method used by Matkovic et al. [8]; (d) Brox flow used by Almeida and Jung [11]; (e) the Lucas-Kanade flow [19]; and (f) deep-learning approach. The
first column is taken from the UCF Marathon dataset: marathon 3 sequence [18], the second column represents the Mecca sequence from the Crowd Saliency

dataset [20], the third column represents sequence 5 from the TUB CrowdFlow dataset [21], the fourth column shows the same sequence but simulated as a
dynamic (moving) scene as viewed from a UAYV, and finally the fifth column represents sequence 3 from the TUB CrowdFlow dataset [21].

Effect of Temporal Averaging: As the proposed approach is towards mobile crowds, we also performed experiments that
centered on real-time lightweight identification of macroscopic involve transitions between crowd patterns by stitching two
patterns, we used the F1 score to evaluate the estimated patterns data sets together and measuring the time it takes for the
of our algorithm, and how temporal averaging (used to mitigate algorithm to adjust its prediction. As few UAV-centric datasets
noise) affects our predictions. Fig. 4 shows the Gaussian- are available, this was the closest testing method. Fig. 5 shows
smoothed raw F1 score across a sample of the frames from the results from Marathon datasets stitched together. We measure
Marathon Dataset for different classified motions. To simulate a  our refractory period using the number of frames until an
turn, we used the marathon 3 sequence and input only the right accuracy above 0.9 is reached (< 30 frames at 30 FPS in
half of the video sequence, thus representing ‘half marathon 3°  Fig. 5). Comparing Figs. 4 and 5, one can appreciate the trade-
in the legend. Fig. 4 shows that when there is a greater bias off involved in choosing «. A higher value of « increases the
toward previous angular values (), there is more stability in  refractory period but results in a persistently accurate output,
identification, and vice versa. while a lower value results in a lower refractory period at the

cost of unstable performance. Therefore, & can be managed on

Transitions in Crowd Pattern: Since our approach is geared
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Fig. 4: Gaussian Smoothed F1 Scores with o = 6. (a) is for o = 0.25, (b) represents « = 0.50, and (c) represents « = 0.75. An important observation is
that giving more weight to new angle values while using older values to slightly correct seems to produce the most consistently accurate results.
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Fig. 5: Smoothed F1 Score for analyzing the refractory period of our proposed method where « represents the ratio of reliance on old information. The dashed
line marks the point where the transition from one motion pattern to another occurs. F1 scores are Gaussian-smoothed with o = 6. (a) represents the transition
from a lane pattern (Marathon 2) to an arch pattern (Marathon 3), (b) from a lane pattern (Marathon 2) to a turning pattern (Half Marathon 3), and (c) from
a turning pattern (Half Marathon 3) to an arch pattern (Marathon 3). Giving more weight to older angle values gives the most stability with a slightly greater
number of frames to reach the said stability, whereas giving more weight to new angle values seems to show the opposite case.

TABLE I: Average Angular Errors (AAE) and their respective Standard Deviation (STD) on TUB CrowdFlow dataset sequences.

Our Method Brox Flow [9] Farneback [12] Lucas-Kanade [19]  Deep Matching [14]

AAE STD AAE STD AAE STD AAE STD AAE STD

Seq. 1 Static. 29.02° 58.66° 19.53° 52.39° 19.66° 52.89° 19.81° 53.59° 20.19° 53.71°
’ Dynamic  146.9° 115.7° 235.3° 106.8° 104.3° 145.0° 229.8° 110.8° 230.7° 110.0°
Seq. 2 Staticv 21.93° 51.10° 1847° 52.61° 14.73° 49.39° 17.20° 52.28° 14.98° 47.20°
’ Dynamic  138.2° 107.3° 170.2° 130.1° 85.06° 133.8° 164.4° 132.8° 164.6° 132.7°
Seq. 3 Static. 14.99° 66.76° 38.69° 97.11° 24.95° 86.01° 83.08° 123.8° 22.81° 82.67°
’ Dynamic  105.1° 59.27° 100.2° 62.09° 53.35° 62.42° 97.76° 59.80° 96.70° 59.23°
Seq. 4 Static. 21.47° 60.06° 31.08° 68.08° 13.77° 51.59° 22.71° 66.32° 25.87° 68.88°
’ Dynamic  97.43° 84.45° 225.6° 160.4° 44.49° 114.3° 122.9° 162.5° 206.3° 158.1°
Seq. 5 Static. 54.19°  110.2° 69.12° 129.5° 55.53° 123.9° 42.77° 132.0° 66.08° 127.5°
’ Dynamic  143.7° 126.2° 192.2° 136.4° 81.23° 143.6° 60.55° 146.3° 188.0° 133.7°

the fly based on application needs, with a lower « favoring
rapid decision making with low confidence, and vice versa.

Quantitative Performance Comparison: Table I presents
a comparative study of our methodology against state-of-the-
art flow estimation techniques in terms of Average Angular
Error (AAE) in the TUB CrowdFlow dataset [21]. Consistent
with the qualitative results depicted in Fig. 3, our algorithm
manifests a commendable performance, notably given its sim-
plicity. Although Farneback stands out as the leading algorithm
in this domain, our approach maintains proximity in the error
range, even outperforming it once, all along with the advantage
of substantially reduced complexity.

Execution Times: Table II illustrates a comparative analysis
of the FPS achieved on embedded GPUs, namely NVIDIA TX2

and Nano. Our algorithm records FPS between 30 and 40 for a
video stream with resolution 720 x 400. Lucas-Kanade appears
to outperform our approach in terms of achieved FPS, but the
important thing to note here is that—since we leverage the
H.264 encoding process—~95% of the reported time involves
processes already running on the drone, while the overhead of
our approach is only 2 and 9 ms per frame on TX2 and Nano,
respectively. Compared to Matkovic et al. [8], who report 91 ms
per frame on a faster AMD Ryzen 7 processor, a runtime of 2
ms still results in a conservative estimate of 45 improvement.
Furthermore, approaches like Lucas-Kanade, although similarly
fast, lack sharing and will impose a new computational load on
the computing board.
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TABLE II: Frames Per Second (FPS) on embedded modules NVIDIA TX2 and NVIDIA Nano, respectively. A large FPS (30—40) shows the feasibility of our
approach for real-time identification of macroscopic crowd patterns, since that is usually the FPS used in recording video. Although it appears that Lucas-Kanade
has a larger FPS in a few instances, it is important to note that ~ 95% of our reported time involves waiting for shared H.264 processes already running on
the drone, with our proposed approach’s overhead only being around 2 and 9 milliseconds for TX2 and Nano, respectively.

Our Method Brox Flow [9]  Farneback [12]  Lucas-Kanade [19] Deep Matching [14]
TX2 Nano TX2 Nano X2 Nano X2 Nano X2 Nano
Seq. 1 Static 41 32 0.3 0.8 12 6 36 23 0.3 0.3
’ Dynamic 30 25 0.3 0.8 12 6 37 24 0.3 0.2
Seq. 2 Static 41 32 0.3 0.7 12 6 44 30 0.3 0.3
’ Dynamic 31 24 0.3 0.7 12 6 42 29 04 0.3
Seq. 3 Static 42 33 0.3 0.8 12 6 44 29 0.3 0.3
’ Dynamic 31 25 0.2 0.8 12 6 44 30 04 0.3
Seq. 4 Static 38 31 0.3 0.7 12 6 35 24 0.3 0.2
’ Dynamic 30 24 0.3 0.8 12 6 41 25 04 0.3
Seq. 5 Static 30 25 0.3 0.7 12 6 37 21 0.3 0.3
’ Dynamic 28 23 0.3 0.8 12 6 33 30 0.4 0.3

V. CONCLUSION AND FUTURE WORK

We present a novel lightweight approach that makes con-
scious use of the onboard resources available in a UAV for the
detection and identification of dominant crowd motion patterns
in real time, taking only a few milliseconds to run on small
embedded modules. We also present a thorough analysis and
achieve great performance at a negligible cost. However, our
algorithm—since it relies on video motion estimation—cannot
differentiate between crowd motion and any motion, in general.
The presented results have been evaluated for videos with
predominant crowd motion, which is what the algorithm is
designed for. Experimenting with other kinds of motion might
lead to misleading results and is a limitation of the presented
work. However, further techniques could be developed to
ensure that the input video predominantly presents moving
crowds. Still, we believe that this approach is a significant
step in the direction of drone-centric intelligence for crowd
surveillance, which can be built effortlessly. We will extend
this work by solidifying our approach against rapid substantive
movements and performing real-life experiments.
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